338 research outputs found
A study of genetic variations, population size, and population dynamics of the catadromous Japanese eel Anguilla japonica (Pisces) in northern Taiwan
Japanese eels are widely distributed in northeast Asian countries, and they have a catadromous life history. In this article, we explored whether Japanese elvers have temporal genetic structure and whether the population went through population expansion during the Pleistocene. In total, 273 specimens were collected from the Tanshui River estuary, northern Taiwan, in 1989-2008. The highly variable region of the mitochondrial DNA D-loop was cloned and sequenced. A genealogy was reconstructed based on the Neighbor-joining method, and results showed an unobvious yearly clade and a high level of haplotype diversity, but low mean nucleotide diversity among samples. Most of the pairwise F (ST) appeared statistically insignificant. These genetic parameters suggested a lack of temporal population structure combined with a sustainable high effective population size of Japanese eels. Negative values of Tajima's D and Fu's F (s) appeared in all samples with high significance. The mismatch distribution, skyline plot, and minimum spanning network indicated that historical population expansion of the Japanese eel could be traced back to the Pleistocene. Results of this study imply the Japanese eel has a complex life history, and the temporal structure of Japanese eels should be continually monitored in the future
Mass Varying Neutrinos in the Sun
In this work we study the phenomenological consequences of the dependence of
mass varying neutrinos on the neutrino density in the Sun, which we precisely
compute in each point along the neutrino trajectory. We find that a generic
characteristic of these scenarios is that they establish a connection between
the effective Delta m^2 in the Sun and the absolute neutrino mass scale. This
does not lead to any new allowed region in the oscillation parameter space. On
the contrary, due to this effect, the description of solar neutrino data
worsens for large absolute mass. As a consequence a lower bound on the level of
degeneracy can be derived from the combined analysis of the solar and KamLAND
data. In particular this implies that the analysis favours normal over inverted
mass orderings. These results, in combination with a positive independent
determination of the absolute neutrino mass, can be used as a test of these
scenarios together with a precise determination of the energy dependence of the
survival probability of solar neutrinos, in particular for low energies.Comment: 15 pages, 4 figures; final version: typos corrected, references
added, matches published versio
Homogenization of weakly coupled systems of Hamilton--Jacobi equations with fast switching rates
We consider homogenization for weakly coupled systems of Hamilton--Jacobi
equations with fast switching rates. The fast switching rate terms force the
solutions converge to the same limit, which is a solution of the effective
equation. We discover the appearance of the initial layers, which appear
naturally when we consider the systems with different initial data and analyze
them rigorously. In particular, we obtain matched asymptotic solutions of the
systems and rate of convergence. We also investigate properties of the
effective Hamiltonian of weakly coupled systems and show some examples which do
not appear in the context of single equations.Comment: final version, to appear in Arch. Ration. Mech. Ana
Interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 Mediates Neurodegeneration in Spinocerebellar Ataxia Type 1
AbstractSpinocerebellar ataxia type 1 (SCA1) is one of several neurological disorders caused by a CAG repeat expansion. In SCA1, this expansion produces an abnormally long polyglutamine tract in the protein ataxin-1. Mutant polyglutamine proteins accumulate in neurons, inducing neurodegeneration, but the mechanism underlying this accumulation has been unclear. We have discovered that the 14-3-3 protein, a multifunctional regulatory molecule, mediates the neurotoxicity of ataxin-1 by binding to and stabilizing ataxin-1, thereby slowing its normal degradation. The association of ataxin-1 with 14-3-3 is regulated by Akt phosphorylation, and in a Drosophila model of SCA1, both 14-3-3 and Akt modulate neurodegeneration. Our finding that phosphatidylinositol 3-kinase/Akt signaling and 14-3-3 cooperate to modulate the neurotoxicity of ataxin-1 provides insight into SCA1 pathogenesis and identifies potential targets for therapeutic intervention
Effects of C-Terminal Truncation on Autocatalytic Processing of Bacillus licheniformis gamma-Glutamyl Transpeptidase
The role of the C-terminal region of Bacillus licheniformis gamma-glutamyl transpeptidase (BlGGT) was investigated by deletion analysis. Seven C-terminally truncated BlGGTs lacking 581-585, 577-585, 576-585, 566-585, 558-585, 523-585, and 479-585 amino acids, respectively, were generated by site-directed mutagenesis. Deletion of the last nine amino acids had no appreciable effect on the autocatalytic processing of the enzyme, and the engineered protein was active towards the synthetic substrate L-gamma-glutamyl-p-nitroanilide. However, a further deletion to Val576 impaired the autocatalytic processing. In vitro maturation experiments showed that the truncated BlGGT precursors, pro-Delta (576-585), pro-Delta (566-585), and pro-Delta(558-585), could partially precede a time-dependent autocatalytic process to generate the L- and S-subunits, and these proteins showed a dramatic decrease in catalytic activity with respect to the wild-type enzyme. The parental enzyme (BlGGT-4aa) and BlGGT were unfolded biphasically by guanidine hydrochloride (GdnCl), but Delta(577-585), Delta(576-585), Delta(566-585), Delta(558-585), Delta(523-585), and Delta(479-585) followed a monophasic unfolding process and showed a sequential reduction in the GdnCl concentration corresponding to half effect and. Delta G(0) for the unfolding. BlGGT-4aa and BlGGT sedimented at similar to 4.85 S and had a heterodimeric structure of approximately 65.23 kDa in solution, and this structure was conserved in all of the truncated proteins. The frictional ratio (f/f(o)) of BlGGT-4aa, BlGGT, Delta(581-585), and Delta(577-585) was 1.58, 1.57, 1.46, and 1.39, respectively, whereas the remaining enzymes existed exclusively as precursor form with a ratio of less than 1.18. Taken together, these results provide direct evidence for the functional role of the C-terminal region in the autocatalytic processing of BlGGT
Non-standard Hamiltonian effects on neutrino oscillations
We investigate non-standard Hamiltonian effects on neutrino oscillations,
which are effective additional contributions to the vacuum or matter
Hamiltonian. Since these effects can enter in either flavor or mass basis, we
develop an understanding of the difference between these bases representing the
underlying theoretical model. In particular, the simplest of these effects are
classified as ``pure'' flavor or mass effects, where the appearance of such a
``pure'' effect can be quite plausible as a leading non-standard contribution
from theoretical models. Compared to earlier studies investigating particular
effects, we aim for a top-down classification of a possible ``new physics''
signature at future long-baseline neutrino oscillation precision experiments.
We develop a general framework for such effects with two neutrino flavors and
discuss the extension to three neutrino flavors, as well as we demonstrate the
challenges for a neutrino factory to distinguish the theoretical origin of
these effects with a numerical example. We find how the precision measurement
of neutrino oscillation parameters can be altered by non-standard effects alone
(not including non-standard interactions in the creation and detection
processes) and that the non-standard effects on Hamiltonian level can be
distinguished from other non-standard effects (such as neutrino decoherence and
decay) if we consider specific imprint of the effects on the energy spectra of
several different oscillation channels at a neutrino factory.Comment: 30 pages, 6 figures, LaTeX, final version, published in Eur.Phys.J.
Neutrino Masses, Mixing and New Physics Effects
We introduce a parametrization of the effects of radiative corrections from
new physics on the charged lepton and neutrino mass matrices, studying how
several relevant quantities describing the pattern of neutrino masses and
mixing are affected by these corrections. We find that the ratio omega = sin
theta / tan theta_atm is remarkably stable, even when relatively large
corrections are added to the original mass matrices. It is also found that if
the lightest neutrino has a mass around 0.3 eV, the pattern of masses and
mixings is considerably more stable under perturbations than for a lighter or
heavier spectrum. We explore the consequences of perturbations on some flavor
relations given in the literature. In addition, for a quasi-degenerate neutrino
spectrum it is shown that: (i) starting from a bi-maximal mixing scenario, the
corrections to the mass matrices keep tan theta_atm very close to unity while
they can lower tan theta_sol to its measured value; (ii) beginning from a
scenario with a vanishing Dirac phase, corrections can induce a Dirac phase
large enough to yield CP violation observable in neutrino oscillations.Comment: 14 pages, 21 figures. Uses RevTeX4. Added several comments and
references. Final version to appear in PR
Theoretical study of lepton events in the atmospheric neutrino experiments at SuperK
Super-Kamiokande has reported the results for the lepton events in the
atmospheric neutrino experiment. These results have been presented for a 22.5kT
water fiducial mass on an exposure of 1489 days, and the events are divided
into sub-GeV, multi-GeV and PC events. We present a study of nuclear medium
effects in the sub-GeV energy region of atmospheric neutrino events for the
quasielastic scattering, incoherent and coherent pion production processes, as
they give the most dominant contribution to the lepton events in this energy
region. We have used the atmospheric neutrino flux given by Honda et al. These
calculations have been done in the local density approximation. We take into
account the effect of Pauli blocking, Fermi motion, Coulomb effect,
renormalization of weak transition strengths in the nuclear medium in the case
of the quasielastic reactions. The inelastic reactions leading to production of
leptons along with pions is calculated in a - dominance model by
taking into account the renormalization of properties in the nuclear
medium and the final state interaction effects of the outgoing pions with the
residual nucleus. We present the results for the lepton events obtained in our
model with and without nuclear medium effects, and compare them with the Monte
Carlo predictions used in the simulation and the experimentally observed events
reported by the Super-Kamiokande collaboration.Comment: 23 pages, 13 figure
Assessment of railway vibrations using an efficient scoping model
Vibration assessments are required for new railroad lines to determine the effect of vibrations on local communities. Low accuracy assessments can significantly increase future project costs in the form of further detailed assessment or unexpected vibration abatement measures. This paper presents a new, high accuracy, initial assessment prediction tool for high speed lines. A key advantage of the new approach is that it is capable of including the effect of soil conditions in its calculation. This is novel because current scoping models ignore soil conditions, despite such characteristics being the most dominant factor in vibration propagation. The model also has zero run times thus allowing for the rapid assessment of vibration levels across rail networks. First, the development of the new tool is outlined. It is founded upon using a fully validated three dimensional finite element model to generate synthetic vibration records for a wide range of soil types. These records are analysed using a machine learning approach to map relationships between soil conditions, train speed and vibration levels. Its performance is tested through the prediction of two independent international vibration metrics on four European high speed lines and it is found to have high prediction accuracy. A key benefit from this increased prediction accuracy is that it potentially reduces the volume of detailed vibration analyses required for a new high speed train line. This avoids costly in-depth studies in the form of field experiments or large numerical models. Therefore the use of the new tool can result in cost savings
- …