26 research outputs found

    Advanced Neuromonitoring and Imaging in Pediatric Traumatic Brain Injury

    Get PDF
    While the cornerstone of monitoring following severe pediatric traumatic brain injury is serial neurologic examinations, vital signs, and intracranial pressure monitoring, additional techniques may provide useful insight into early detection of evolving brain injury. This paper provides an overview of recent advances in neuromonitoring, neuroimaging, and biomarker analysis of pediatric patients following traumatic brain injury

    Trajectory of long-term outcome in severe pediatric diffuse axonal injury: An exploratory study

    Get PDF
    Introduction: Pediatric severe traumatic brain injury (TBI) is one of the leading causes of disability and death. One of the classic pathoanatomic brain injury lesions following severe pediatric TBI is diffuse (multifocal) axonal injury (DAI). In this single institution study, our overarching goal was to describe the clinical characteristics and long-term outcome trajectory of severe pediatric TBI patients with DAI.Methods: Pediatric patients (<18 years of age) with severe TBI who had DAI were retrospectively reviewed. We evaluated the effect of age, sex, Glasgow Coma Scale (GCS) score, early fever ≥ 38.5°C during the first day post-injury, the extent of ICP-directed therapy needed with the Pediatric Intensity Level of Therapy (PILOT) score, and MRI within the first week following trauma and analyzed their association with outcome using the Glasgow Outcome Score—Extended (GOS-E) scale at discharge, 6 months, 1, 5, and 10 years following injury.Results: Fifty-six pediatric patients with severe traumatic DAI were analyzed. The majority of the patients were >5 years of age and male. There were 2 mortalities. At discharge, 56% (30/54) of the surviving patients had unfavorable outcome. Sixty five percent (35/54) of surviving children were followed up to 10 years post-injury, and 71% (25/35) of them made a favorable recovery. Early fever and extensive DAI on MRI were associated with worse long-term outcomes.Conclusion: We describe the long-term trajectory outcome of severe pediatric TBI patients with pure DAI. While this was a single institution study with a small sample size, the majority of the children survived. Over one-third of our surviving children were lost to follow-up. Of the surviving children who had follow-up for 10 years after injury, the majority of these children made a favorable recovery

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Sedation and Analgesia in Children with Developmental Disabilities and Neurologic Disorders

    Get PDF
    Sedation and analgesia performed by the pediatrician and pediatric subspecialists are becoming increasingly common for diagnostic and therapeutic purposes in children with developmental disabilities and neurologic disorders (autism, epilepsy, stroke, obstructive hydrocephalus, traumatic brain injury, intracranial hemorrhage, and hypoxic-ischemic encephalopathy). The overall objectives of this paper are (1) to provide an overview on recent studies that highlight the increased risk for respiratory complications following sedation and analgesia in children with developmental disabilities and neurologic disorders, (2) to provide a better understanding of sedatives and analgesic medications which are commonly used in children with developmental disabilities and neurologic disorders on the central nervous system

    Differential Effects of Injury Severity on Cognition and Cellular Pathology after Contusive Brain Trauma in the Immature Rat

    No full text
    Although diffuse brain damage has been suggested to be the predominant predictor of neurological morbidity following closed head injury in infants and children, the presence of contusions also predicts long-term neurobehavioral dysfunction. Contusive brain trauma in the 17-day-old rat resulted in neurodegeneration and caspase activation in the cortex at 1 day, and in the thalamus at 3 days post-injury, and to a greater extent following a deeper impact. Cortical tissue loss in the 4-mm impact group was significantly greater than that in the 3-mm impact group (p < 0.05), and exhibited a time-dependent increase over the first 3 weeks post-injury. Traumatic axonal injury was observed in the white matter tracts below the site of impact at 1 day, and in the corpus callosum at 3 days, to a greater extent following 4-mm impact. In contrast, cellular caspase-3 activation in these white matter tracts was only observed at 24 h post-injury and was not affected by impact depth. Similarly, neurodegeneration and caspase activation in the hippocampus was restricted to the dentate gyrus and occurred to a similar extent in both injured groups. Only the 4-mm impact group exhibited learning deficits in the first week (p < 0.0001) that was sustained until the third week post-injury (p < 0.0001), while deficits in the 3-mm impact group were seen only at 3 weeks post-injury (p < 0.02). These observations demonstrate that increasing severity of injury in immature animals does not uniformly increase the extent of cellular damage, and that the progression of tissue damage and behavioral deficits varies as a function of injury severity

    Acute neurological injury in pediatric patients with single-ventricle congenital heart disease.

    No full text
    OBJECTIVE: Single-ventricle congenital heart disease (CHD) in pediatric patients with Glenn and Fontan physiology represents a unique physiology requiring the surgical diversion of the systemic venous return from the superior vena cava (Glenn) and then the inferior vena cava (Fontan) directly to the pulmonary arteries. Because many of these patients are on chronic anticoagulation therapy and may have right-to-left shunts, arrhythmias, or lymphatic disorders that predispose them to bleeding and/or clotting, they are at risk of experiencing neurological injury requiring intubation and positive pressure ventilation, which can significantly hamper pulmonary blood flow and cardiac output. The aim of this study was to describe the complex neurological and cardiopulmonary interactions of these pediatric patients after acute central nervous system (CNS) injury. METHODS: The authors retrospectively analyzed the records of pediatric patients who had been admitted to a quaternary children\u27s hospital with CHD palliated to bidirectional Glenn (BDG) or Fontan circulation and acute CNS injury and who had undergone intubation and mechanical ventilation. Patients who had been admitted from 2005 to 2019 were included in the study. Clinical characteristics, surgical outcomes, cardiovascular and pulmonary data, and intracranial pressure data were collected and analyzed. RESULTS: Nine pediatric single-ventricle patients met the study inclusion criteria. All had undergone the BDG procedure, and the majority (78%) were status post Fontan palliation. The mean age was 7.4 years (range 1.3-17.3 years). At the time of acute CNS injury, which included traumatic brain injury, intracranial hemorrhage, and cerebral infarct, the median time interval from the most recent cardiac surgical procedure was 3 years (range 2 weeks-11 years). Maintaining normocarbia to mild hypercarbia for most patients during intubation periods did not cause neurological deterioration, and hemodynamic profiles were more favorable as compared to periods of hypocarbia. Hypocarbia was associated with unfavorable hemodynamics but was necessary to decrease intracranial hypertension. Most patients were managed using low mean airway pressure (MAWP) in order to minimize the impact on preload and cardiac output. CONCLUSIONS: The authors highlight the complex neurological and cardiopulmonary interactions with respect to partial pressure of arterial CO2 (PaCO2) and MAWP when pediatric CHD patients with single-ventricle physiology require mechanical ventilation. The study data demonstrated that tight control of PaCO2 and minimizing MAWP with the goal of early extubation may be beneficial in this population. A multidisciplinary team of pediatric critical care intensivists, cardiac intensivists and anesthesiologists, and pediatric neurosurgeons and neurologists are recommended to ensure the best possible outcomes
    corecore