17 research outputs found

    A new family of covalent inhibitors block nucleotide binding to the active site of pyruvate kinase

    Get PDF
    PYK (pyruvate kinase) plays a central role in the metabolism of many organisms and cell types, but the elucidation of the details of its function in a systems biology context has been hampered by the lack of specific high-affinity small-molecule inhibitors. High-throughput screening has been used to identify a family of saccharin derivatives which inhibit LmPYK (Leishmania mexicana PYK) activity in a time- (and dose-) dependent manner, a characteristic of irreversible inhibition. The crystal structure of DBS {4-[(1,1-dioxo-1,2-benzothiazol-3-yl)sulfanyl]benzoic acid} complexed with LmPYK shows that the saccharin moiety reacts with an active-site lysine residue (Lys335), forming a covalent bond and sterically hindering the binding of ADP/ATP. Mutation of the lysine residue to an arginine residue eliminated the effect of the inhibitor molecule, providing confirmation of the proposed inhibitor mechanism. This lysine residue is conserved in the active sites of the four human PYK isoenzymes, which were also found to be irreversibly inhibited by DBS. X-ray structures of PYK isoforms show structural differences at the DBS-binding pocket, and this covalent inhibitor of PYK provides a chemical scaffold for the design of new families of potentially isoform-specific irreversible inhibitors

    Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial

    Get PDF
    Background: Intensive antiplatelet therapy with three agents might be more effective than guideline treatment for preventing recurrent events in patients with acute cerebral ischaemia. We aimed to compare the safety and efficacy of intensive antiplatelet therapy (combined aspirin, clopidogrel, and dipyridamole) with that of guideline-based antiplatelet therapy. Methods: We did an international, prospective, randomised, open-label, blinded-endpoint trial in adult participants with ischaemic stroke or transient ischaemic attack (TIA) within 48 h of onset. Participants were assigned in a 1:1 ratio using computer randomisation to receive loading doses and then 30 days of intensive antiplatelet therapy (combined aspirin 75 mg, clopidogrel 75 mg, and dipyridamole 200 mg twice daily) or guideline-based therapy (comprising either clopidogrel alone or combined aspirin and dipyridamole). Randomisation was stratified by country and index event, and minimised with prognostic baseline factors, medication use, time to randomisation, stroke-related factors, and thrombolysis. The ordinal primary outcome was the combined incidence and severity of any recurrent stroke (ischaemic or haemorrhagic; assessed using the modified Rankin Scale) or TIA within 90 days, as assessed by central telephone follow-up with masking to treatment assignment, and analysed by intention to treat. This trial is registered with the ISRCTN registry, number ISRCTN47823388. Findings: 3096 participants (1556 in the intensive antiplatelet therapy group, 1540 in the guideline antiplatelet therapy group) were recruited from 106 hospitals in four countries between April 7, 2009, and March 18, 2016. The trial was stopped early on the recommendation of the data monitoring committee. The incidence and severity of recurrent stroke or TIA did not differ between intensive and guideline therapy (93 [6%] participants vs 105 [7%]; adjusted common odds ratio [cOR] 0·90, 95% CI 0·67–1·20, p=0·47). By contrast, intensive antiplatelet therapy was associated with more, and more severe, bleeding (adjusted cOR 2·54, 95% CI 2·05–3·16, p<0·0001). Interpretation: Among patients with recent cerebral ischaemia, intensive antiplatelet therapy did not reduce the incidence and severity of recurrent stroke or TIA, but did significantly increase the risk of major bleeding. Triple antiplatelet therapy should not be used in routine clinical practice

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial

    Get PDF
    Background: Intensive antiplatelet therapy with three agents might be more effective than guideline treatment for preventing recurrent events in patients with acute cerebral ischaemia. We aimed to compare the safety and efficacy of intensive antiplatelet therapy (combined aspirin, clopidogrel, and dipyridamole) with that of guideline-based antiplatelet therapy.Methods: We did an international, prospective, randomised, open-label, blinded-endpoint trial in adult participants with ischaemic stroke or transient ischaemic attack (TIA) within 48 h of onset. Participants were assigned in a 1:1 ratio using computer randomisation to receive loading doses and then 30 days of intensive antiplatelet therapy (combined aspirin 75 mg, clopidogrel 75 mg, and dipyridamole 200 mg twice daily) or guideline-based therapy (comprising either clopidogrel alone or combined aspirin and dipyridamole). Randomisation was stratified by country and index event, and minimised with prognostic baseline factors, medication use, time to randomisation, stroke-related factors, and thrombolysis. The ordinal primary outcome was the combined incidence and severity of any recurrent stroke (ischaemic or haemorrhagic; assessed using the modified Rankin Scale) or TIA within 90 days, as assessed by central telephone follow-up with masking to treatment assignment, and analysed by intention to treat. This trial is registered with the ISRCTN registry, number ISRCTN47823388.Findings: 3096 participants (1556 in the intensive antiplatelet therapy group, 1540 in the guideline antiplatelet therapy group) were recruited from 106 hospitals in four countries between April 7, 2009, and March 18, 2016. The trial was stopped early on the recommendation of the data monitoring committee. The incidence and severity of recurrent stroke or TIA did not differ between intensive and guideline therapy (93 [6%] participants vs 105 [7%]; adjusted common odds ratio [cOR] 0·90, 95% CI 0·67–1·20, p=0·47). By contrast, intensive antiplatelet therapy was associated with more, and more severe, bleeding (adjusted cOR 2·54, 95% CI 2·05–3·16,

    Pulmonary Eosinophilic Granuloma with Diabetes Insipidus

    No full text

    The Conserved ATPase Get3/Arr4 Modulates the Activity of Membrane-Associated Proteins in Saccharomyces cerevisiae

    No full text
    The regulation of cellular membrane dynamics is crucial for maintaining proper cell growth and division. The Cdc48-Npl4-Ufd1 complex is required for several regulated membrane-associated processes as part of the ubiquitin–proteasome system, including ER-associated degradation and the control of lipid composition in yeast. In this study we report the results of a genetic screen in Saccharomyces cerevisiae for extragenic suppressors of a temperature-sensitive npl4 allele and the subsequent analysis of one suppressor, GET3/ARR4. The GET3 gene encodes an ATPase with homology to the regulatory component of the bacterial arsenic pump. Mutants of GET3 rescue several phenotypes of the npl4 mutant and transcription of GET3 is coregulated with the proteasome, illustrating a functional relationship between GET3 and NPL4 in the ubiquitin–proteasome system. We have further found that Get3 biochemically interacts with the trans-membrane domain proteins Get1/Mdm39 and Get2/Rmd7 and that Δget3 is able to suppress phenotypes of get1 and get2 mutants, including sporulation defects. In combination, our characterization of GET3 genetic and biochemical interactions with NPL4, GET1, and GET2 implicates Get3 in multiple membrane-dependent pathways

    The trypanocidal drug suramin and other trypan blue mimetics are inhibitors of pyruvate kinases and bind to the adenosine site

    No full text
    Ehrlich's pioneering chemotherapeutic experiments published in 1904 (Ehrlich, P., and Shiga, K. (1904) Berlin Klin. Wochenschrift 20, 329-362) described the efficacy of a series of dye molecules including trypan blue and trypan red to eliminate trypanosome infections in mice. The molecular structures of the dyes provided a starting point for the synthesis of suramin, which was developed and used as a trypanocidal drug in 1916 and is still in clinical use. Despite the biological importance of these dye-like molecules, the mode of action on trypanosomes has remained elusive. Here we present crystal structures of suramin and three related dyes in complex with pyruvate kinases from Leishmania mexicana or from Trypanosoma cruzi. The phenyl sulfonate groups of all four molecules (suramin, Ponceau S, acid blue 80, and benzothiazole-2,5- disulfonic acid) bind in the position of ADP/ATP at the active sites of the pyruvate kinases (PYKs). The binding positions in the two different trypanosomatid PYKs are nearly identical. We show that suramin competitively inhibits PYKs from humans (muscle, tumor, and liver isoenzymes, K i ∇ 1.1-17 μM), T. cruzi (K i ∇ 108 μM), and L. mexicana (K i ∇ 116 μM), all of which have similar active sites. Synergistic effects were observed when examining suramin inhibition in the presence of an allosteric effector molecule, whereby IC 50 values decreased up to 2-fold for both trypanosomatid and human PYKs. These kinetic and structural analyses provide insight into the promiscuous inhibition observed for suramin and into the mode of action of the dye-like molecules used in Ehrlich's original experiments

    Identification of selective inhibitors of phosphofructokinase as lead compounds against trypanosomiasis

    No full text
    The protist Trypansoma brucei is the causative agent of Human African Trypanosomiasis (HAT), a disease that is endemic to sub-Saharan Africa and is responsible for approximately 50,000 deaths each year worldwide. Current therapies employed to treat HAT generally suffer from poor selectivity profiles, and consequently, lead to high rates of deleterious side effects. Furthermore, growing resistance to these drugs has highlighted a need for the identification of novel therapies. The glycolytic enzyme phosphofructokinase (PFK) has been recognized as a potential therapeutic target in the fight against the bloodstream form of T. brucei due to the reliance of this parasite on the metabolism of glucose as its sole mechanism for the generation of adenosine triphosphates (ATP). The importance of this enzyme has been confirmed by genetic validation, and thus, its inhibition may represent a novel strategy for the treatment of HAT. Currently, no inhibitors of Tb PFK have been described that possess ideal drug-like qualities or submicromolar potency in either enzymatic or live parasite culture assays. As a result, in collaboration with Professor Malcolm Walkinshaw of the University of Edinburgh, a quantitative High Throughput Screening (qHTS) campaign was initiated at the NIH Chemical Genomics Center to identify novel small molecule inhibitors of Tb PFK. The primary screen utilized a firefly luciferase-coupled assay specifically designed to monitor the production of ADP in the kinase reaction. This work, together with subsequent medicinal chemistry efforts, has identified a novel small molecule inhibitor (ML251) of Tb PFK, which is described herein to possess potent activity in enzymatic assays (IC50 = 370 nM) and toxicity against cultured T. brucei (ED50 = 16.3 M). This compound has been subjected to a panel of in vitro absorption, distribution, metabolism, and excretion (ADME) assays and delivers a promising profile in this respect. Finally, cytotoxicity evaluations against MRC-5 human lung fibroblast cells and KB-3-1 HeLa cells, in addition to assessment against purified Bacillus stearothermophilus PFK, indicate that ML251 displays a high degree of selectivity for the targeted enzym
    corecore