129 research outputs found

    Confinement and short distance physics

    Full text link
    We consider non-perturbative effects at short distances in theories with confinement. The analysis is straightforward within the Abelian models in which the confinement arises on classical level. In all cases considered (compact U(1) in 3D and 4D, dual Abelian Higgs model) there are non-perturbative contributions associated with short distances which are due to topological defects. In QCD case, both classical and quantum effects determine the role of the topological defects and the theoretical analysis has not been completed so far. Generically, the topological defects would result in 1/Q^2 corrections going beyond the standard Operator Product Expansion. We review existing data on the power corrections and find that the data favor existence of the novel corrections, at least at the mass scale of (1-2) GeV. We indicate crucial experiments which could further clarify the situation on the phenomenological side.Comment: 11 pp., Latex2e, 4 figures, epsfig.sty. Accepted for publication in Physics Letters

    New empirical fits to the proton electromagnetic form factors

    Get PDF
    Recent measurements of the ratio of the elastic electromagnetic form factors of the proton, G_Ep/G_Mp, using the polarization transfer technique at Jefferson Lab show that this ratio decreases dramatically with increasing Q^2, in contradiction to previous measurements using the Rosenbluth separation technique. Using this new high quality data as a constraint, we have reanalyzed most of the world e-p elastic cross section data. In this paper, we present a new empirical fit to the reanalyzed data for the proton elastic magnetic form factor in the region 0 < Q^2 < 30 GeV^2. As well, we present an empirical fit to the proton electromagnetic form factor ratio, G_Ep/G_Mp, which is valid in the region 0.1 < Q^2 < 6 GeV^2

    Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    Get PDF
    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{\sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap

    Atmospheric Neutrino Oscillations and New Physics

    Get PDF
    We study the robustness of the determination of the neutrino masses and mixing from the analysis of atmospheric and K2K data under the presence of different forms of phenomenologically allowed new physics in the nu_mu--nu_tau sector. We focus on vector and tensor-like new physics interactions which allow us to treat, in a model independent way, effects due to the violation of the equivalence principle, violations of the Lorentz invariance both CPT conserving and CPT violating, non-universal couplings to a torsion field and non-standard neutrino interactions with matter. We perform a global analysis of the full atmospheric data from SKI together with long baseline K2K data in the presence of nu_mu -> nu_tau transitions driven by neutrino masses and mixing together with sub-dominant effects due to these forms of new physics. We show that within the present degree of experimental precision, the extracted values of masses and mixing are robust under those effects and we derive the upper bounds on the possible strength of these new interactions in the nu_mu--nu_tau sector.Comment: 22 pages, LaTeX file using RevTEX4, 5 figures and 4 tables include

    On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory

    Full text link
    We study the nature of the confinement phase transition in d=3+1 dimensions in various non-abelian gauge theories with the approach put forward in [1]. We compute an order-parameter potential associated with the Polyakov loop from the knowledge of full 2-point correlation functions. For SU(N) with N=3,...,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. We find that it is weaker than for SU(N). We show that this can be understood in terms of the eigenvalue distribution of the order parameter potential close to the phase transition.Comment: 15 page

    Multi-parameter optimization: Development of a morpholin-3-one derivative with an improved kinetic profile for imaging monoacylglycerol lipase in the brain

    Get PDF
    Monoacylglycerol lipase (MAGL) is a gatekeeper in regulating endocannabinoid signaling and has gained sub-stantial attention as a therapeutic target for neurological disorders. We recently discovered a morpholin-3-one derivative as a novel scaffold for imaging MAGL via positron emission tomography (PET). However, its slow kinetics in vivo hampered the application. In this study, structural optimization was conducted and eleven novel MAGL inhibitors were designed and synthesized. Based on the results from MAGL inhibitory potency, in vitro metabolic stability and surface plasmon resonance assays, we identified compound 7 as a potential MAGL PET tracer candidate. [11C]7 was synthesized via direct 11CO2 fixation method and successfully mapped MAGL dis-tribution patterns on rodent brains in in vitro autoradiography. PET studies in mice using [11C]7 demonstrated its improved kinetic profile compared to the lead structure. Its high specificity in vivo was proved by using MAGL KO mice. Although further studies confirmed that [11C]7 is a P-glycoprotein (P-gp) substrate in mice, its low P-gp efflux ratio on cells transfected with human protein suggests that it should not be an issue for the clinical translation of [11C]7 as a novel reversible MAGL PET tracer in human subjects. Overall, [11C]7 ([11C] RO7284390) showed promising results warranting further clinical evaluation.Molecular Physiolog

    TESS Reveals HD 118203 b to be a Transiting Planet

    Get PDF
    The exoplanet HD 118203 b, orbiting a bright (V = 8.05) host star, was discovered using the radial velocity method by da Silva et al., but was not previously known to transit. Transiting Exoplanet Survey Satellite (TESS) photometry has revealed that this planet transits its host star. Nine planetary transits were observed by TESS, allowing us to measure the radius of the planet to be 1.136-0.028 +0.029 R J, and to calculate the planet mass to be 2.166-0.079 +0.074 M J. The host star is slightly evolved with an effective temperature of T eff=5683-85 +84 K and a surface gravity of log\,g=3.889 0.018-0.017. With an orbital period of 6.134985-0.000030 +0.000029 days and an eccentricity of 0.314 ± 0.017, the planet occupies a transitional regime between circularized hot Jupiters and more dynamically active planets at longer orbital periods. The host star is among the 10 brightest known to have transiting giant planets, providing opportunities for both planetary atmospheric and asteroseismic studies

    Neutrino oscillation studies with IceCube-DeepCore

    Get PDF
    AbstractIceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed

    KOI-3158: The oldest known system of terrestrial-size planets

    Get PDF
    The first discoveries of exoplanets around Sun-like stars have fueled efforts to find ever smaller worlds evocative of Earth and other terrestrial planets in the Solar System. While gas-giant planets appear to form preferentially around metal-rich stars, small planets (with radii less than four Earth radii) can form under a wide range of metallicities. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the Universe's history when metals were far less abundant. We report Kepler spacecraft observations of KOI-3158, a metal-poor Sun-like star from the old population of the Galactic thick disk, which hosts five planets with sizes between Mercury and Venus. We used asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that KOI-3158 formed when the Universe was less than 20 % of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the Universe's 13.8-billion-year history, providing scope for the existence of ancient life in the Galaxy

    Toward Sustainable Environmental Quality : Priority Research Questions for Asia

    Get PDF
    Environmental and human health challenges are pronounced in Asia, an exceptionally diverse and complex region where influences of global megatrends are extensive and numerous stresses to environmental quality exist. Identifying priorities necessary to engage grand challenges can be facilitated through horizon scanning exercises, and to this end we identified and examined 23 priority research questions needed to advance toward more sustainable environmental quality in Asia, as part of the Global Horizon Scanning Project. Advances in environmental toxicology, environmental chemistry, biological monitoring, and risk-assessment methodologies are necessary to address the adverse impacts of environmental stressors on ecosystem services and biodiversity, with Asia being home to numerous biodiversity hotspots. Intersections of the food–energy–water nexus are profound in Asia; innovative and aggressive technologies are necessary to provide clean water, ensure food safety, and stimulate energy efficiency, while improving ecological integrity and addressing legacy and emerging threats to public health and the environment, particularly with increased aquaculture production. Asia is the largest chemical-producing continent globally. Accordingly, sustainable and green chemistry and engineering present decided opportunities to stimulate innovation and realize a number of the United Nations Sustainable Development Goals. Engaging the priority research questions identified herein will require transdisciplinary coordination through existing and nontraditional partnerships within and among countries and sectors. Answering these questions will not be easy but is necessary to achieve more sustainable environmental quality in Asia. Environ Toxicol Chem 2020;39:1485–1505
    • …
    corecore