331 research outputs found

    Field #3 of the Palomar-Groningen Survey II. Near-infrared photometry of semiregular variables

    Get PDF
    Near-infrared photometry (JHKL'M) was obtained for 78 semiregular variables (SRVs) in field #3 of the Palomar-Groningen survey (PG3, l=0, b=-10). Together with a sample of Miras in this field a comparison is made with a sample of field SRVs and Miras. The PG3 SRVs form a sequence (period-luminosity & period-colour) with the PG3 Miras, in which the SRVs are the short period extension to the Miras. The field and PG3 Miras follow the same P/(J--K)o relation, while this is not the case for the field and PG3 SRVs. Both the PG3 SRVs and Miras follow the SgrI period-luminosity relation adopted from Glass et al. (1995, MNRAS 273, 383). They are likely pulsating in the fundamental mode and have metallicities spanning the range from intermediate to approximately solar.Comment: 14 pages LaTeX (2 tables, 8 figures), to appear in A&A 338 (1998); minor modifications in tex

    Working Fluid Quantity Effect on Magnetic Field Control of Heat Pipes

    Get PDF
    This paper deals with heat pipes controlled by a static magnetic field and with an important side effect – the quantity of working fluid. Heat pipes are able to provide very effective heat transport. Several standard regulation methods are commonly used for this purpose. In previous experiments implemented in our laboratory, we have observed the significant influence of a magnetic field on the heat conductance of the selected heat pipe. A special heat pipe was manufactured for this purpose and pure oxygen was chosen as a working fluid, due to its suitable magnetic properties. The heat pipe operation and the magnetic field control depend on various parameters. This paper is focused on the influence of the quantity of working fluid. Some important results of our experiments are presented and discussed.

    Synthetic seismograms for deep seismic sounding studies using asymptotic ray theory

    Get PDF
    In asymptotic ray theory, the solution for particle motion is assumed to be an infinite power series of inverse frequency and a vector amplitude, Ān(x, y, z), independent of frequency. A point source with any desired impulse response and radiation pattern is easily incorporated. A synthetic seismogram computer program has been written for a plane-layered homogeneous elastic media using the first or second terms of the expansion where necessary. Multiply converted refracted and reflected phases and also head waves at distances away from the critical angle are included. In addition, the phases are all identified and their amplitude-distance function plotted if desired. The synthetic seismograms are calculated for a model in southern Alberta and another in northwestern Ontario as obtained by deep seismic sounding programs. It is found that reflected phases dominate the seismograms and they are at least as important as head waves in the interpretation of experimental results

    The VLTI/MIDI view on the inner mass loss of evolved stars from the Herschel MESS sample

    Get PDF
    The mass-loss process from evolved stars is a key ingredient for our understanding of many fields of astrophysics, including stellar evolution and the chemical enrichment of the interstellar medium via stellar yields. One the main unsolved questions is the geometry of the mass-loss process. Taking advantage of the results from the Herschel Mass loss of Evolved StarS (MESS) programme, we initiated a coordinated effort to characterise the geometry of mass loss from evolved red giants at various spatial scales. For this purpose we used the MID-infrared interferometric Instrument (MIDI) to resolve the inner envelope of 14 asymptotic giant branch stars (AGBs) in the MESS sample. In this contribution we present an overview of the interferometric data collected within the frame of our Large Programme, and we also add archive data for completeness. We studied the geometry of the inner atmosphere by comparing the observations with predictions from different geometric models. Asymmetries are detected for five O-rich and S-type, suggesting that asymmetries in the N band are more common among stars with such chemistry. We speculate that this fact is related to the characteristics of the dust grains. Except for one star, no interferometric variability is detected, i.e. the changes in size of the shells of non-mira stars correspond to changes of the visibility of less than 10%. The observed spectral variability confirms previous findings from the literature. The detection of dust in our sample follows the location of the AGBs in the IRAS colour-colour diagram: more dust is detected around oxygen-rich stars in region II and in the carbon stars in region VII. The SiC dust feature does not appear in the visibility spectrum of UAnt and SSct, which are two carbon stars with detached shells. This finding has implications for the theory of SiC dust formation.Comment: 43 pages, 31 figures; accepted for publication in Astronomy & Astrophysics. Abstract shortened for compilation reasons. Metadata correcte

    Grown-up stars physics with MATISSE

    Full text link
    MATISSE represents a great opportunity to image the environment around massive and evolved stars. This will allow one to put constraints on the circumstellar structure, on the mass ejection of dust and its reorganization , and on the dust-nature and formation processes. MATISSE measurements will often be pivotal for the understanding of large multiwavelength datasets on the same targets collected through many high-angular resolution facilities at ESO like sub-millimeter interferometry (ALMA), near-infrared adaptive optics (NACO, SPHERE), interferometry (PIONIER, GRAVITY), spectroscopy (CRIRES), and mid-infrared imaging (VISIR). Among main sequence and evolved stars, several cases of interest have been identified that we describe in this paper.Comment: SPIE, Jun 2016, Edimbourgh, Franc

    Fostering collaborative knowledge construction with visualization tools

    Get PDF
    This study investigates to what extent collaborative knowledge construction can be fostered by providing students with visualization tools as structural support. Thirty-two students of Educational Psychology took part in the study. The students were subdivided into dyads and asked to solve a case problem of their learning domain under one of two conditions: 1) with content-specific visualization 2) with content-unspecific visualization. Results show that by being provided with a content-specific visualization tool, both the process and the outcome of the cooperative effort improved. More specifically, dyads under that condition referred to more adequate concepts, risked more conflicts, and were more successful in integrating prior knowledge into the collaborative solution. Moreover, those learning partners had a more similar individual learning outcome

    Supersymmetric Fokker-Planck strict isospectrality

    Full text link
    I report a study of the nonstationary one-dimensional Fokker-Planck solutions by means of the strictly isospectral method of supesymmetric quantum mechanics. The main conclusion is that this technique can lead to a space-dependent (modulational) damping of the spatial part of the nonstationary Fokker-Planck solutions, which I call strictly isospectral damping. At the same time, using an additive decomposition of the nonstationary solutions suggested by the strictly isospectral procedure and by an argument of Englefield [J. Stat. Phys. 52, 369 (1988)], they can be normalized and thus turned into physical solutions, i.e., Fokker-Planck probability densities. There might be applications to many physical processes during their transient periodComment: revised version, scheduled for PRE 56 (1 August 1997) as a B

    The geometry of the close environment of SV Psc as probed by VLTI/MIDI

    Full text link
    Context. SV Psc is an asymptotic giant branch (AGB) star surrounded by an oxygen-rich dust envelope. The mm-CO line profile of the object's outflow shows a clear double-component structure. Because of the high angular resolution, mid-IR interferometry may give strong constraints on the origin of this composite profile. Aims. The aim of this work is to investigate the morphology of the environment around SV Psc using high-angular resolution interferometry observations in the mid-IR with the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI). Methods. Interferometric data in the N-band taken at different baseline lengths (ranging from 32-64 m) and position angles (73- 142{\deg}) allow a study of the morphology of the circumstellar environment close to the star. The data are interpreted on the basis of 2-dimensional, chromatic geometrical models using the fitting software tool GEM-FIND developed for this purpose. Results. The results favor two scenarios: (i) the presence of a highly inclined, optically thin, dusty disk surrounding the central star; (ii) the presence of an unresolved binary companion at a separation of 13.7 AU and a position angle of 121.8{\deg} NE. The derived orbital period of the binary is 38.1 yr. This detection is in good agreement with hydrodynamic simulations showing that a close companion could be responsible for the entrainment of the gas and dust into a circumbinary structure.Comment: 10 pages, 12 figure

    Formation of convective cells in the scrape-off layer of the CASTOR tokamak

    Get PDF
    Understanding of the scrape-off layer (SOL) physics in tokamaks requires diagnostics with sufficient temporal and spatial resolution. This contribution describes results of experiments performed in the SOL of the CASTOR tokamak (R=40 cm, a = 6 cm) by means of a ring of 124 Langmuir probes surrounding the whole poloidal cross section. The individual probes measure either the ion saturation current of the floating potential with the spatial resolution up to 3 mm. Experiments are performed in a particular magnetic configuration, characterized by a long parallel connection length in the SOL, L_par ~q2piR. We report on measurements in discharges, where the edge electric field is modified by inserting a biased electrode into the edge plasma. In particular, a complex picture is observed, if the biased electrode is located inside the SOL. The poloidal distribution of the floating potential appears to be strongly non-uniform at biasing. The peaks of potential are observed at particular poloidal angles. This is interpreted as formation of a biased flux tube, which emanates from the electrode along the magnetic field lines and snakes q times around the torus. The resulting electric field in the SOL is 2-dimensional, having the radial as well as the poloidal component. It is demonstrated that the poloidal electric field E_pol convects the edge plasma radially due to the E_pol x B_T drift either inward or outward depending on its sign. The convective particle flux is by two orders of magnitude larger than the fluctuation-induced one and consequently dominates.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France
    • …
    corecore