25 research outputs found

    Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Oecologia 180 (2016): 809-821, doi:10.1007/s00442-015-3475-3.Coral reefs support spectacularly productive and diverse communities in tropical and sub26 tropical waters throughout the world’s oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon. We coupled compound-specific δ13C analyses with Bayesian mixing models to quantify carbon flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ13C values of essential amino acids from all baseline carbon sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single source end-member often dominated dietary carbon assimilation of a given species, even for highly mobile, generalist top predators. Microbially-reworked detritus was an important secondary carbon source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, L. ehrenbergii, showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13% of dietary carbon) to a phytoplankton-based food web (72 ± 11%) on oceanic reefs. Our work provides insights into the roles that diverse carbon sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.This research was based on work supported by Awards USA 00002 and KSA 00011 from King Abdullah University of Science and Technology (KAUST); additional funding was provided by the Woods Hole Oceanographic Institution (WHOI), a KAUST-WHOI award (SPCF-7000000104), and KAUST baseline research funds.2016-11-2

    Stable isotope analyses of feather amino acids identify penguin migration strategies at ocean basin scales

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Biology Letters 13 (2017): 20170241, doi:10.1098/rsbl.2017.0241.Identifying the at-sea distribution of wide ranging 20 marine predators is critical to understanding their ecology. Advances in electronic tracking devices and intrinsic biogeochemical markers have greatly improved our ability to track animal movements on ocean-wide scales. Here we show that, in combination with direct tracking, stable carbon isotope analysis of essential amino acids in tail feathers provides the ability to track the movement patterns of two, wide-ranging penguin species over ocean basin scales. In addition, we use this isotopic approach across multiple breeding colonies in the Scotia Arc to evaluate migration trends at a regional scale that would be logistically challenging using direct tracking alone.Funded by the National Marine Sanctuary Foundation (GLS tags), Ocean Life Institute (M.J.P, L.H., S.R.T), Darwin Initiative (T.H.), and SeaWorld Bush Gardens Conservation Fund (M.J.P, S.R.T)

    Stable isotope analyses of feather amino acids identify penguin migration strategies at ocean basin scales

    Get PDF
    Identifying the at-sea distribution of wide-ranging marine predators is critical to understanding their ecology. Advances in electronic tracking devices and intrinsic biogeochemical markers have greatly improved our ability to track animal movements on ocean-wide scales. Here, we show that, in combination with direct tracking, stable carbon isotope analysis of essential amino acids in tail feathers provides the ability to track the movement patterns of two, wide-ranging penguin species over ocean basin scales. In addition, we use this isotopic approach across multiple breeding colonies in the Scotia Arc to evaluate migration trends at a regional scale that would be logistically challenging using direct tracking alone.Facultad de Ciencias Naturales y Muse

    Stable isotope analyses of feather amino acids identify penguin migration strategies at ocean basin scales

    Get PDF
    Identifying the at-sea distribution of wide-ranging marine predators is critical to understanding their ecology. Advances in electronic tracking devices and intrinsic biogeochemical markers have greatly improved our ability to track animal movements on ocean-wide scales. Here, we show that, in combination with direct tracking, stable carbon isotope analysis of essential amino acids in tail feathers provides the ability to track the movement patterns of two, wide-ranging penguin species over ocean basin scales. In addition, we use this isotopic approach across multiple breeding colonies in the Scotia Arc to evaluate migration trends at a regional scale that would be logistically challenging using direct tracking alone.Facultad de Ciencias Naturales y Muse

    Compound-specific stable isotope analysis of amino acids in pelagic shark vertebrae reveals baseline, trophic, and physiological effects on bulk protein isotope records

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Magozzi, S., Thorrold, S. R., Houghton, L., Bendall, V. A., Hetherington, S., Mucientes, G., Natanson, L. J., Queiroz, N., Santos, M. N., & Trueman, C. N. Compound-specific stable isotope analysis of amino acids in pelagic shark vertebrae reveals baseline, trophic, and physiological effects on bulk protein isotope records. Frontiers in Marine Science, 8, (2021): 673016, https://doi.org/10.3389/fmars.2021.673016.Variations in stable carbon and nitrogen isotope compositions in incremental tissues of pelagic sharks can be used to infer aspects of their spatial and trophic ecology across life-histories. Interpretations from bulk tissue isotopic compositions are complicated, however, because multiple processes influence these values, including variations in primary producer isotope ratios and consumer diets and physiological processing of metabolites. Here we challenge inferences about shark tropho-spatial ecology drawn from bulk tissue isotope data using data for amino acids. Stable isotope compositions of individual amino acids can partition the isotopic variance in bulk tissue into components associated with primary production on the one hand, and diet and physiology on the other. The carbon framework of essential amino acids (EAAs) can be synthesised de novo only by plants, fungi and bacteria and must be acquired by consumers through the diet. Consequently, the carbon isotopic composition of EAAs in consumers reflects that of primary producers in the location of feeding, whereas that of non-essential amino acids (non-EAAs) is additionally influenced by trophic fractionation and isotope dynamics of metabolic processing. We determined isotope chronologies from vertebrae of individual blue sharks and porbeagles from the North Atlantic. We measured carbon and nitrogen isotope compositions in bulk collagen and carbon isotope compositions of amino acids. Despite variability among individuals, common ontogenetic patterns in bulk isotope compositions were seen in both species. However, while life-history movement inferences from bulk analyses for blue sharks were supported by carbon isotope data from essential amino acids, inferences for porbeagles were not, implying that the observed trends in bulk protein isotope compositions in porbeagles have a trophic or physiological explanation, or are suprious effects. We explored variations in carbon isotope compositions of non-essential amino acids, searching for systematic variations that might imply ontogenetic changes in physiological processing, but patterns were highly variable and did not explain variance in bulk protein δ13C values. Isotopic effects associated with metabolite processing may overwhelm spatial influences that are weak or inconsistently developed in bulk tissue isotope values, but interpreting mechanisms underpinning isotopic variation in patterns in non-essential amino acids remains challenging.The internship of SM at the Woods Hole Oceanographic Institution was funded by the School of Ocean and Earth Science at University of Southampton. Stable isotope analyses were paid by CT and ST research budgets and SM Ph.D. and placement funding

    Human cytomegalovirus protein RL1 degrades the antiviral factor SLFN11 via recruitment of the CRL4 E3 ubiquitin ligase complex.

    Get PDF
    Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate, and adaptive immunity. We have employed two orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins down-regulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterized, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden
    corecore