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Identifying the at-sea distribution of wide-ranging marine predators is criti-

cal to understanding their ecology. Advances in electronic tracking devices

and intrinsic biogeochemical markers have greatly improved our ability to

track animal movements on ocean-wide scales. Here, we show that, in com-

bination with direct tracking, stable carbon isotope analysis of essential

amino acids in tail feathers provides the ability to track the movement

patterns of two, wide-ranging penguin species over ocean basin scales. In

addition, we use this isotopic approach across multiple breeding colonies

in the Scotia Arc to evaluate migration trends at a regional scale that

would be logistically challenging using direct tracking alone.
1. Introduction
Identifying the at-sea distribution of wide-ranging marine animals is critical to

aid in their conservation [1] and advances in electronic tracking devices have

revolutionized our ability to track animal movements on ocean-wide scales

[2]. However, tracking studies can be limited in scale owing to logistical, financial

and ethical constraints. Intrinsic biogeochemical markers that retain spatial

information, including stable isotope analysis (SIA), have therefore been used

to complement direct tracking [3]. SIA can increase the scale of tracking studies

by examining a greater number of individuals and/or locations to better gener-

alize population-level movements [4]. However, interpreting bulk tissue SIA

can be challenging, because it is often difficult to distinguish the influence of

a consumer’s diet (i.e. what it eats) from geographical differences in isotopic

values (i.e. where it is eating) [3,5].

Compound-specific SIA of amino acids (CSIA-AA) may offer a solution

to the bulk SIA problem of distinguishing between diet and geographical

differences as some individual amino acids faithfully reflect ecosystem baseline

isotopic values that can be used to independently evaluate animal move-

ment [5]. However, few studies have applied CSIA-AA at ocean basin scales

and most have focused on nitrogen isotopes [5,6]. Carbon isotope values

(d13C) of essential AA are also likely to be useful for estimating movement

patterns of wide-ranging marine species. This is because essential AAs trans-

fer from diet without alteration and reflect primary producer community
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Table 1. Mean+ s.d. d13C values and classification accuracies from GLS tracked penguins exhibiting three differing winter migration strategies. (Parentheses
identify sample sizes of individuals from either Admiralty Bay or Cape Shirreff, and LDA classifications excluding Adélie penguins.)

GLS tracked
penguins

Adélie penguin chinstrap penguin

east, Weddell Sea east, Scotia Sea west, Pacific sector

n 18 (18,0) 6 (5,1) 28 (10,18)

d13C (‰)

bulk feather 224.3+ 0.3 224.5+ 0.5 222.8+ 0.6

valine 230.7+ 0.7 229.7+ 0.4 227.9+ 0.9

isoleucine 220.4+ 2.1 217.7+ 0.9 219.4+ 1.5

leucine 234.9+ 0.7 233.4+ 1.7 233.4+ 1.7

threonine 214.1+ 1.7 211.4+ 1.5 211.7+ 2.6

phenylalanine 230.2+ 0.7 230.1+ 0.4 228.7+ 1.5

LDA (%)

bulk d13C 66.7 33.3 (83.3) 82.1 (82.1)

essential AA d13C 94.4 100.0 (100.0) 96.4 (89.3)

Table 2. Mean+ s.d. essential AA d13C values and assigned winter migration strategies of chinstrap penguins from five breeding locations. (Parentheses
identify sample size of GLS tracked individuals at each site and 95% credibility intervals for mixing model analyses.)

breeding site

South Orkney Islands South Shetland Islands Western Antarctic Peninsula

Point Martin, Laurie Is.
Admiralty Bay,
King George Is.

Cape Shirreff,
Livingston Is.

Half Moon Is.,
Livingston Is.

Orne Harbour,
Arctowski Peninsula

lat., long. 60.768S, 44.688W 62.178S, 58.458W 62.478S, 60.788W 62.588S, 62.588W 64.628S, 62.538W

n 20 (0) 20 (15) 20 (19) 20 (0) 20 (0)

d13C (‰)

valine 227.9+ 1.8 228.5+ 1.1 227.8+ 1.0 227.2+ 1.3 227.2+ 2.1

isoleucine 218.8+ 1.9 219.5+ 2.0 219.1+ 1.5 219.5+ 2.6 221.0+ 1.6

leucine 232.7+ 2.1 233.3+ 1.7 233.5+ 1.6 232.4+ 1.8 233.9+ 1.6

threonine 212.1+ 3.4 211.6+ 2.7 211.5+ 2.2 212.1+ 2.7 210.5+ 4.6

phenylalanine 230.2+ 1.9 229.1+ 1.2 228.6+ 1.6 230.7+ 1.6 230.5+ 1.6

LDA (%)

east 38.9 26.3 5.0 10.5 11.8

west 61.1 73.7 95.0 89.5 88.2

mixing-model (%)

east 32.6 (2.1 – 58.7) 23.8 (5.9 – 41.3) 9.0 (0.0 – 19.9) 10.0 (0.0 – 28.5) 11.5 (0.0 – 32.7)

west 67.4 (41.3 – 97.9) 76.2 (58.7 – 94.1) 91.0 (80.1 – 100) 90.0 (71.5 – 100) 88.5 (67.3 – 100)
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composition at the base of geographically distinct food webs

[7–9]. For example, one recent study found geographical

variation in penguin chick AA d13C values with latitude,

though at the time they cautioned that using AA d13C to

track forging locations may not be possible [9].

The goal of this research is to test the ability of d13C CSIA-

AA to discriminate among three migration strategies

identified by archival geolocation tags (GLS) [10] in two

wide-ranging species, the Adélie (Pygoscelis adeliae) and

chinstrap (P. antarctica) penguin. We then use this technique

to assign migration strategies to untracked individual
chinstrap penguins from multiple breeding colonies to

evaluate regional migration trends at population-level scales.
2. Material and methods
Breeding adult Chinstrap and Adélie penguins from Cape

Shirreff, Livingston Island and Admiralty Bay, King George

Island (tables 1 and 2) were tagged during the 2011/2012 breed-

ing season with Lotek Nano-Lat 2900-series GLS (Lotek Wireless,

Inc.) and recaptured the following year (2012/2013). Tags pro-

vided daily estimates of latitude and longitude over the austral
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Figure 1. Indices of (a) geographical habitat use and (b) multivariate discrimination based on essential AA d13C values of (c) Adélie and chinstrap penguins. Habitat
use data modified from Hinke et al. [10]. Dotted lines represent 50% probability of assignment. (Online version in colour.)
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winter. At recapture, a central tail feather was collected, a prox-

imal section of which reflected a late-March to early June growth

period when penguins were migrating to or inhabiting their

winter foraging areas [10]. We restricted our spatial analyses to

penguins that had GLS data within the window of tail-feather

synthesis and isotopic incorporation (i.e. 40–100 days following

the onset of molt; Adélie penguins: 25 March–24 May; chinstrap

penguins: 10 April–9 June). Details on GLS data processing,

feather growth rates and bulk d13C values are provided in

Hinke et al. [10]. In 2012/2013, we collected tail feathers from

additional, untracked breeding adult chinstrap penguins from

five breeding sites (table 2).

Tail feather sections (20 mg each) were acid hydrolysed, deri-

vatized and analysed for CSIA-AA following the methods

outlined McMahon et al. [11]. Samples were analysed in dupli-

cate with AA and fish muscle standards of known isotopic

composition (mean reproducibility: AA standard: +0.2‰;

internal fish standard: +0.6‰). We focused on bulk feather

d13C and five essential AAs (threonine, isoleucine, valine,

phenylalanine and leucine) and used linear discriminant ana-

lyses (LDA) in program R (v. 2.15.3) [12] with leave-one-out

cross-validation to differentiate among the three migration strat-

egies observed by Hinke et al. [10]: Adélie penguins migrating

eastward from their breeding sites into the Weddell Sea, chin-

strap penguins migrating eastward into the Scotia Sea, and

chinstrap penguins migrating westward to the Pacific sector of

the Southern Ocean (table 1 and figure 1). We then used LDA

to discriminate between the two chinstrap penguin migration

strategies in isolation and assign untracked individuals to

specific migration strategies. We evaluated regional migration
trends using only chinstrap penguins with known migration pat-

terns (GLS) and those that were assigned based on CSIA-AA

with greater than or equal to 80% probability of group

membership [4,5].

We also applied a Bayesian mixing-model approach [13] in

program R [12] to obtain a probability distribution of migration

strategies at the five chinstrap penguins breeding sites examined.

We used essential AAs d13C values of GLS tracked chinstrap pen-

guins as source end-members (eastward versus westward), and

values of all penguins by breeding site regardless of if their

migration status was known. We used a small non-zero trophic

discrimination factor in the model (0.1+ 0.1‰) [7] and ran 1

million iterations, thinned by 15, with an initial discard of 40

000 resulting in 64 000 posterior draws.
3. Results
LDA classification using AA d13C out-performed bulk d13C

and provided clear separation in canonical multivariate

space (Wilk’s l ¼ 0.16, p , 0.001; table 1 and figure 1).

Individuals misclassified by AA d13C were assigned as

chinstrap penguins migrating eastward. AA d13C LDA accu-

racy was greater than or equal to 89.3% for chinstrap

penguins only (Wilk’s l ¼ 0.34, p , 0.001) and out-performed

bulk d13C (table 1).

Migration strategies for 59 of the 66 untracked chinstrap

penguins were assigned with greater than or equal to 80%

probability. When combined with individuals of known
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(b) assigned winter migration strategies (eastward or westward) in chinstrap penguins from five breeding locations using LDA ( pie charts) and stable isotope
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migration status, a majority of chinstrap penguins exhibited

‘Pacific’ isotopic signatures, consistent with a westward

migration (81.7%). However, we also observed a relatively

higher number of individuals exhibiting a ‘Scotia Sea’ signa-

ture at sites located farther north and east (table 2 and

figure 2). This was confirmed by our mixing-model approach,

with 95% credibility intervals around the contribution of east-

ward versus westward migrants overlapping only at the most

northeastern breeding site (table 2 and figure 2).
4. Discussion
Essential AA d13C values in tail feathers successfully discrimi-

nated between the winter migration strategies observed in

Adélie and chinstrap penguins. This approach provided

more accurate classifications than bulk d13C and success-

fully differentiated species-specific habitat niches between

eastward moving Adélie and chinstrap penguins (into the

ice-covered Weddell Sea versus the ice free Scotia Sea, respect-

ively) [10]. In addition, our results were unaffected by trophic

biases [5,8] as essential AA in penguin tail feathers most prob-

ably reflect only the baseline d13C values in their specific

wintering area [8]. Differences in baseline d13C values across

wintering areas in this study may be driven by differences in

the phytoplankton and/or sea-ice algae community compo-

sition and sources of inorganic carbon [14,15].

Differences in essential AA d13C values among eastward

versus westward migrating chinstrap penguins also pro-

vided a basis for assignment of untracked individuals. This

allowed us to expand the overall sample sizes (i.e. number

of individuals) and spatial scope (i.e. number and range of

breeding sites) of our study to confirm that the dominant

migration strategy of chinstrap penguins from the Antarctic

Peninsula region and southern Scotia Sea is westward. One

possible hypothesis for this trend is competitive avoidance

as the Scotia Sea is home to large wintering populations of

Macaroni (Eudyptes chrysolophus) and southern rockhopper

(E. chrysocome chrysocome) penguins [16]. In addition, we

identified a spatial trend with a relatively higher number of
eastward migrating individuals at sites located farther north-

wards and eastwards (figure 2). This may suggest that the

location of breeding sites influences migration patterns. Fol-

lowing this trend, one might expect individuals breeding in

the South Sandwich Islands to remain in the Scotia Sea

during winter, as this archipelago is the farthest northeast

and contains the largest chinstrap penguin breeding popu-

lation [17]. If so, this might serve as a source of intra-specific

competition and further explain dominance of westward

migration strategies of chinstrap penguins from our study

sites. An alternate explanation is some individuals from

northeastern colonies may obtain a ‘Scotia Sea’ isotopic

signature while migrating westward towards the Pacific.

In summary, to our knowledge this research represents

the first use of essential AA d13C values to track the migration

routes and at-sea distribution of a wide-ranging marine pred-

ator. While the spatial resolution of essential AA d13C is

coarse compared to direct tracking, this approach can signifi-

cantly expand the scope of studies and help facilitate inference

about individual and population processes in far-ranging

marine species. Future studies that elucidate spatial gradients

in oceanic isotopic baselines will further refine our ability to

track marine animal movements over ocean basin scales.
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Antártico Argentino, and Quark Expeditions, K. McMahon and
P. McDowell for field and analysis assistance.

https://swfsc.noaa.gov/AERD-Data/
https://swfsc.noaa.gov/AERD-Data/
https://swfsc.noaa.gov/AERD-Data/


5
References
rsbl.royalsocietypublishing.org
Biol.Lett.13:20170241
1. Costa DP, Breed GA, Robinson PW. 2012 New
insights into pelagic migrations: implications for
ecology and conservation. Annu. Rev. Ecol. Evol.
Syst. 43, 73 – 96. (doi:10.1146/annurev-ecolsys-
102710-145045)

2. Block BA et al. 2011 Tracking apex marine predator
movements in a dynamic ocean. Nature 475,
86 – 90. (doi:10.1038/nature10082)
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in chinstrap and Adélie penguins from the South
Shetland Islands. Ecosphere 6, 1 – 32. (doi:10.1890/
ES14-00287.1)

11. McMahon KW, Thorrold SR, Houghton LA, Berumen
ML. 2016 Tracing carbon flow through coral reef
food webs using a compound-specific stable isotope
approach. Oecologia 180, 809 – 821. (doi:10.1007/
s00442-015-3475-3)
12. R Core Team. 2013 R: a language and environment
for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing.

13. Parnell AC, Inger R, Bearhop S, Jackson AL. 2010
Source partitioning using stable isotopes: coping
with too much variation. PLoS ONE 5, e9672.
(doi:10.1371/journal.pone.0009672)

14. McMahon KW, Hamady LL, Thorrold SR. 2013 A
review of ecogeochemistry approaches to estimating
movements of marine animals. Limnol. Oceanogr.
58, 697 – 714. (doi:10.4319/lo.2013.58.2.0697)

15. Graham BS, Koch PL, Newsome SD, McMahon KW,
Aurioles D. 2010 Using isoscapes to trace the
movements and foraging behavior of top predators
in oceanic ecosystems. In Isoscapes, (eds JB West,
GJ Bowen, TE Dawson, KP TU pp. 299 – 318.
Dordrecht, The Netherlands: Springer.

16. Ratcliffe N et al. 2014 Love thy neighbour or
opposites attract? Patterns of spatial segregation
and association among crested penguin populations
during winter. J. Biogeogr. 41, 1183 – 1192. (doi:10.
1111/jbi.12279)

17. Lynch HJ, White R, Naveen R, Black A, Meixler MS,
Fagan WF. 2016 In stark contrast to widespread
declines along the Scotia Arc, a survey of the South
Sandwich Islands finds a robust seabird community.
Polar Biol. 39, 1615 – 1625. (doi:10.1007/s00300-
015-1886-6)

http://dx.doi.org/10.1146/annurev-ecolsys-102710-145045
http://dx.doi.org/10.1146/annurev-ecolsys-102710-145045
http://dx.doi.org/10.1038/nature10082
http://dx.doi.org/10.1890/110140
http://dx.doi.org/10.1890/ES12-00220.1
http://dx.doi.org/10.1371/journal.pone.0037403
http://dx.doi.org/10.1890/13-1467.1
http://dx.doi.org/10.1890/13-1467.1
http://dx.doi.org/10.1111/j.1365-2656.2010.01722.x
http://dx.doi.org/10.1002/ece3.1437
http://dx.doi.org/10.1002/ece3.1437
http://dx.doi.org/10.3354/meps08215
http://dx.doi.org/10.3354/meps08215
http://dx.doi.org/10.1890/ES14-00287.1
http://dx.doi.org/10.1890/ES14-00287.1
http://dx.doi.org/10.1007/s00442-015-3475-3
http://dx.doi.org/10.1007/s00442-015-3475-3
http://dx.doi.org/10.1371/journal.pone.0009672
http://dx.doi.org/10.4319/lo.2013.58.2.0697
http://dx.doi.org/10.1111/jbi.12279
http://dx.doi.org/10.1111/jbi.12279
http://dx.doi.org/10.1007/s00300-015-1886-6
http://dx.doi.org/10.1007/s00300-015-1886-6

	Stable isotope analyses of feather amino acids identify penguin migration strategies at ocean basin scales
	Introduction
	Material and methods
	Results
	Discussion
	Ethics
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


