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Abstract: Identifying the at-sea distribution of wide ranging marine predators is critical to 20 

understanding their ecology. Advances in electronic tracking devices and intrinsic 21 

biogeochemical markers have greatly improved our ability to track animal movements on ocean-22 

wide scales. Here we show that, in combination with direct tracking, stable carbon isotope 23 

analysis of essential amino acids in tail feathers provides the ability to track the movement 24 

patterns of two, wide-ranging penguin species over ocean basin scales. In addition, we use this 25 

isotopic approach across multiple breeding colonies in the Scotia Arc to evaluate migration 26 

trends at a regional scale that would be logistically challenging using direct tracking alone. 27 

 28 
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1. Introduction 30 

Identifying the at-sea distribution of wide ranging marine animals is critical to aid in their 31 

conservation [1] and advances in electronic tracking devices have revolutionized our ability to 32 

track animal movements on ocean-wide scales [2]. However, tracking studies can be limited in 33 

scale due to logistical, financial and ethical constraints.  Intrinsic biogeochemical markers that 34 

retain spatial information, including stable isotope analysis (SIA), have therefore been used to 35 

complement direct tracking [3]. SIA can increase the scale of tracking studies by examining a 36 

greater number of individuals and/or locations to better generalize population-level movements 37 

[4]. However, interpreting bulk tissue SIA can be challenging because it is often difficult to 38 

distinguish the influence of a consumer’s diet (i.e. what it eats) from geographic differences in 39 

isotopic values (i.e. where it is eating) [3, 5].  40 

Compound-specific SIA of amino acids (CSIA-AA) may offer a solution to the bulk SIA 41 

problem of distinguishing between diet and geographic differences as some individual amino 42 

acids (AAs) faithfully reflect ecosystem baseline isotopic values that  can be used to 43 

independently evaluate animal movement [5]. However, few studies have applied CSIA-AA at 44 

ocean basin scales and most have focused on nitrogen isotopes [5, 6]. Carbon isotope values 45 

(δ13C) of essential AA are also likely to be useful for estimating movement patterns of wide-46 

ranging marine species. This is because essential AAs transfer from diet without alteration and 47 

reflect primary producer community composition at the base of geographically distinct food 48 

webs [7-9]. For example, one recent study found geographic variation in penguin chick AA δ13C 49 

values with latitude, thought at the time they cautioned that using AA δ13C to track forging 50 

locations may not be possible [9]. 51 
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 The goal of this research is to test the ability of δ13C CSIA-AA to discriminate among 52 

three migrations strategies identified  by  archival geolocation tags (GLS) [10] in two wide-53 

ranging species, the Adélie (Pygoscelis adeliae) and Chinstrap (P. antarctica) penguin. We then 54 

use this technique to assign migration strategies to untracked individual Chinstrap penguins from 55 

multiple breeding colonies to evaluate regional migration trends at population-level scales. 56 

 57 

2. Material and methods 58 

Breeding adult Chinstrap and Adélie penguins from Cape Shirreff, Livingston Island and 59 

Admiralty Bay, King George Island (Table 1 and 2)  were tagged during 2011/12 breeding 60 

season with Lotek Nano-Lat 2900-series GLS (Lotek Wireless, Inc.) and recaptured the 61 

following year (2012/13). Tags provided daily estimates of latitude and longitude over the 62 

austral winter. At recapture a central tail feather was collected, a proximal section of which 63 

reflected a late-March to early-June growth period when penguins were migrating to or 64 

inhabiting their winter foraging areas [10]. We restricted our spatial analyses to penguins that 65 

had GLS data within the window of tail-feather synthesis and isotopic incorporation (i.e. 40-66 

100 days following the onset of molt; Adélie penguins: 25 March - 24 May; chinstrap 67 

penguins: 10 April - 9 June). Details on GLS data processing, feather growth rates, and bulk 68 

δ13C values are provided in Hinke et al. [10].  In 2012/13 we collected tail feathers from 69 

additional, untracked breeding adult Chinstrap penguins from five breeding sites (Table 2). 70 

Tail feather sections (20 mg each) were acid hydrolyzed, derivatized and analyzed for 71 

CSIA-AA following the methods outlined McMahon et al. [11]. Samples were analyzed in 72 

duplicate with AA and fish muscle standards of known isotopic composition (mean 73 

reproducibility: AA standard:  ±0.2 ‰; internal fish standard:  ±0.6 ‰). We focused on bulk 74 
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feather δ13C and  five essential AAs (threonine, isoleucine, valine, phenylalanine, and 75 

leucine) and used linear discriminant analyses (LDA) in program R (ver. 2.15.3) [12] with 76 

leave-one-out cross-validation to differentiate among the three migration strategies observed 77 

by Hinke et al. [10]: Adélie penguins migrating eastward from their breeding sites into the 78 

Weddell Sea, Chinstrap penguins migrating eastward into the Scotia Sea, and Chinstrap 79 

penguins migrating westward to the Pacific sector of the Southern Ocean (Table 1, Fig. 1). 80 

We then used LDA to discriminate between the two Chinstrap penguin migration strategies 81 

in isolation and assign untracked individuals to specific migration strategies. We evaluated 82 

regional migration trends using only Chinstrap penguins with known migration patterns 83 

(GLS) and those that were assigned based on CSIA-AA with ≥ 80% probability of group 84 

membership [4, 5]. 85 

We also applied a Bayesian mixing-model approach [13] in program R  [12] to obtain a 86 

probability distribution of migration strategies at the five Chinstrap penguins breeding sites 87 

examined. We used essential AAs δ13C values of GLS tracked Chinstrap penguin as source 88 

end-members (eastward vs. westward), and values of all penguins by breeding site regardless 89 

of if their migration status was known. We used a small non-zero trophic discrimination 90 

factor in the model (0.1 ± 0.1‰) [7] and ran 1 million iterations, thinned by 15, with an 91 

initial discard of 40,000 resulting in 64,000 posterior draws. 92 

 93 

3. Results 94 

LDA classification using AA δ13C out-performed bulk δ13C and provided clear separation 95 

in canonical multivariate space (Wilk’s lambda = 0.16, P < 0.001; Table 1, Fig. 1). 96 

Individuals misclassified by AA δ13C were assigned as Chinstrap penguins migrating 97 
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eastward. AA δ13C LDA accuracy was ≥ 89.3% for Chinstrap penguins only (Wilk’s lambda 98 

= 0.34, P < 0.001) and out-performed bulk δ13C (Table 1). 99 

 Migration strategies for 59 of the 66 untracked Chinstrap penguins were assigned with ≥ 100 

80% probability. When combined with individuals of known migration status, a majority of 101 

Chinstrap penguins exhibited “Pacific” isotopic signatures, consistent with a westward 102 

migration (81.7%). However, we also observed a relatively higher number of individuals 103 

exhibiting a “Scotia Sea” signature at sites located farther north and east (Table 2; Fig. 2).  104 

This was confirmed by our mixing-model approach, with 95% credibility intervals around 105 

the contribution of eastward vs. westward migrants overlapping only at the most northeastern 106 

breeding site (Table 2; Fig. 2). 107 

 108 

4. Discussion 109 

Essential AA δ13C values in tail feathers successfully discriminated between the winter 110 

migrations strategies observed in Adélie and Chinstrap penguins.  This approach provided more 111 

accurate classifications than bulk δ13C and successfully differentiated species-specific habitat 112 

niches between eastward moving Adélie and Chinstrap penguins (into the ice-covered Weddell 113 

Sea vs. ice free Scotia Sea, respectively) [10]. In addition, our results were unaffected by trophic 114 

biases [5, 8] as essential AA in penguin tail feathers most likely reflect only the baseline δ13C 115 

values in their specific wintering area [8].  Differences in baseline δ13C values across wintering 116 

areas in this study may be driven by differences in the phytoplankton and/or sea-ice algae 117 

community composition and sources of inorganic carbon [14, 15].  118 

 Differences in essential AA δ13C values among eastward vs. westward migrating 119 

Chinstrap penguins also provided a basis for assignment of untracked individuals. This allowed 120 
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us to expand the overall sample sizes (i.e. number of individuals) and spatial scope (i.e. number 121 

and range of breeding sites) of our study to confirm that the dominant migration strategy of 122 

chinstrap penguins from the Antarctic Peninsula region and southern Scotia Sea is westward. 123 

One possible hypothesis for this trend is competitive avoidance as the Scotia Sea is home to large 124 

wintering populations of Macaroni (Eudyptes chrysolophus) and southern rockhopper (E. 125 

chrysocome chrysocome) penguins [16].  In addition, we identified a spatial trend with a 126 

relatively higher number of eastward migrating individuals at sites located farther northwards 127 

and eastwards (Fig. 2). This may suggest that the location of breeding sites influences migration 128 

patterns. Following this trend, one might expect individuals breeding in the South Sandwich 129 

Islands to remain in the Scotia Sea during winter, as this archipelago is the farthest northeast and 130 

contains the  largest Chinstrap penguin breeding population [17]. If so, this might serve as a 131 

source of intra-specific competition and further explain dominance of westward migration 132 

strategies of Chinstrap penguins from our study sites. An alternate explanation is some 133 

individuals from northeastern colonies may obtain a “Scotia Sea” isotopic signature while 134 

migrating westward towards the Pacific. 135 

 In summary, to our knowledge this research represents the first use of essential AA δ13C 136 

values to track the migration routes and at-sea distribution of a wide-ranging marine predator. 137 

While the spatial resolution of essential AA δ13C is coarse compared to direct tracking, this 138 

approach can significantly expand the scope of studies and help facilitate inference about 139 

individual and population processes in far-ranging marine species. Future studies that elucidate 140 

spatial gradients in oceanic isotopic baselines will further refine our ability to track marine 141 

animal movements over ocean basin scales.  142 

 143 



8 
 

Ethics. Field work was conducted via an Antarctic Conservation Act permit (ACA 2013-007) 144 

and animal use approved by WHOI (27071382) and UCSD (S05480) IACUC. 145 

 146 

Data accessibility. GLS and isotope data are available online at https://swfsc.noaa.gov/AERD-147 

Data/ 148 

Authors’ contributions. Study design: M.J.P, J.T.H, S.R.T.; Fieldwork: M.J.P, J.T.H, T.H., 149 

M.S.; Data analysis: M.J.P, J.T.H, T.H., L.H.; Manuscript: M.J.P; All authors revised and gave 150 

final approval for publication and agree to be held accountable for the work performed therein. 151 

 152 

Competing interests. We have no competing interests. 153 

 154 

Funding. Funded by the National Marine Sanctuary Foundation (GLS tags), Ocean Life Institute 155 

(M.J.P, L.H., S.R.T), Darwin Initiative (T.H.), and SeaWorld Bush Gardens Conservation Fund 156 

(M.J.P, S.R.T).  157 

 158 

Acknowledgements. We thank the US AMLR program, Instituto Antártico Argentino, and 159 

Quark Expeditions, K. McMahon, and P. McDowell for field and analysis assistance.   160 

https://swfsc.noaa.gov/AERD-Data/
https://swfsc.noaa.gov/AERD-Data/


9 
 

References  161 

[1] Costa, D.P., Breed, G.A. & Robinson, P.W. 2012 New insights into pelagic migrations: implications for 162 
ecology and conservation. Annual review of ecology, evolution, and systematics 43, 73-96. 163 
[2] Block, B.A., Jonsen, I., Jorgensen, S., Winship, A., Shaffer, S.A., Bograd, S., Hazen, E., Foley, D., Breed, 164 
G. & Harrison, A.-L. 2011 Tracking apex marine predator movements in a dynamic ocean. Nature 475, 165 
86-90. 166 
[3] Ramos, R. & González-Solís, J. 2012 Trace me if you can: the use of intrinsic biogeochemical markers 167 
in marine top predators. Frontiers in Ecology and the Environment 10, 258-266. 168 
[4] Pajuelo, M., Bjorndal, K.A., Reich, K.J., Vander Zanden, H.B., Hawkes, L.A. & Bolten, A.B. 2012 169 
Assignment of nesting loggerhead turtles to their foraging areas in the Northwest Atlantic using stable 170 
isotopes. Ecosphere 3, 1-18. 171 
[5] Seminoff, J.A., Benson, S.R., Arthur, K.E., Eguchi, T., Dutton, P.H., Tapilatu, R.F. & Popp, B.N. 2012 172 
Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ 15 N analysis 173 
of amino acids. PLoS One 7, e37403. 174 
[6] Madigan, D.J., Baumann, Z., Carlisle, A.B., Hoen, D.K., Popp, B.N., Dewar, H., Snodgrass, O.E., Block, 175 
B.A. & Fisher, N.S. 2014 Reconstructing transoceanic migration patterns of Pacific bluefin tuna using a 176 
chemical tracer toolbox. Ecology 95, 1674-1683. 177 
[7] McMahon, K.W., Fogel, M.L., Elsdon, T.S. & Thorrold, S.R. 2010 Carbon isotope fractionation of 178 
amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. Journal of 179 
Animal Ecology 79, 1132-1141. 180 
[8] McMahon, K.W., Polito, M.J., Abel, S., McCarthy, M.D. & Thorrold, S.R. 2015 Carbon and nitrogen 181 
isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis 182 
papua). Ecology and evolution 5, 1278-1290. 183 
[9] Lorrain, A., Graham, B., Ménard, F., Popp, B., Bouillon, S., Van Breugel, P. & Cherel, Y. 2009 Nitrogen 184 
and carbon isotope values of individual amino acids: a tool to study foraging ecology of penguins in the 185 
Southern Ocean. Marine Ecology Progress Series 391, 293-306. 186 
[10] Hinke, J.T., Polito, M.J., Goebel, M.E., Jarvis, S., Reiss, C.S., Thorrold, S.R., Trivelpiece, W.Z. & 187 
Watters, G.M. 2015 Spatial and isotopic niche partitioning during winter in chinstrap and Adélie 188 
penguins from the South Shetland Islands. Ecosphere 6, 1-32. 189 
[11] McMahon, K.W., Thorrold, S.R., Houghton, L.A. & Berumen, M.L. 2016 Tracing carbon flow through 190 
coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809-821. 191 
[12] R Core Team. 2013 R: A language and environment for statistical computing.  (Vienna, Austria, R 192 
Foundation for Statistical Computing. 193 
[13] Parnell, A.C., Inger, R., Bearhop, S. & Jackson, A.L. 2010 Source partitioning using stable isotopes: 194 
coping with too much variation. PloS one 5, e9672. 195 
[14] McMahon, K.W., Hamady, L.L. & Thorrold, S.R. 2013 A review of ecogeochemistry approaches to 196 
estimating movements of marine animals. Limnology and Oceanography 58, 697-714. 197 
[15] Graham, B.S., Koch, P.L., Newsome, S.D., McMahon, K.W. & Aurioles, D. 2010 Using isoscapes to 198 
trace the movements and foraging behavior of top predators in oceanic ecosystems. In Isoscapes (pp. 199 
299-318, Springer Netherlands. 200 
[16] Ratcliffe, N., Crofts, S., Brown, R., Baylis, A.M., Adlard, S., Horswill, C., Venables, H., Taylor, P., 201 
Trathan, P.N. & Staniland, I.J. 2014 Love thy neighbour or opposites attract? Patterns of spatial 202 
segregation and association among crested penguin populations during winter. Journal of biogeography 203 
41, 1183-1192. 204 
[17] Lynch, H.J., White, R., Naveen, R., Black, A., Meixler, M.S. & Fagan, W.F. 2016 In stark contrast to 205 
widespread declines along the Scotia Arc, a survey of the South Sandwich Islands finds a robust seabird 206 
community. Polar Biology 39, 1615-1625. 207 



11 
 

Table 1. Mean±SD δ13C values and classification accuracies from GLS tracked penguins 209 

exhibiting three differing winter migration strategies. Parentheses identify individuals from 210 

either Admiralty Bay or Cape Shirreff, and LDA classifications excluding Adélie penguins. 211 

 212 

Table 2. Mean±SD essential AA δ13C values and assigned winter migration strategies of 213 

Chinstrap penguins from five breeding locations. Parentheses identify GLS tracked individuals at 214 

each site. 215 

 216 

Figure 1. Indices of A) geographic habitat utilization and B) multivariate discrimination based 217 

on essential AA δ13C values of C) Adélie and Chinstrap penguins. Habitat utilization data 218 

modified from Hinke et al. [10]. Dotted lines represent 50% probability of assignment. 219 

 220 

Figure 2. A) Multivariate discrimination of tracked (colored points) and untracked (white points) 221 

Chinstrap penguins based on essential AA δ13C values and B) assigned winter migration 222 

strategies (eastward or westward) in Chinstrap penguins from five breeding locations using LDA 223 

(pie charts) and stable isotope mixing-models (histograms). Dotted line represents 50% 224 

probability of assignment.225 
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Table 1. 

GLS tracked penguins 
Adélie penguin  Chinstrap penguin 

East, Weddell Sea  East, Scotia Sea West, Pacific sector 
n 18 (18,0)  6 (5,1) 28 (10,18) 

δ13C (‰) 
   

 
Bulk feather  -24.3±0.3  -24.5±0.5 -22.8±0.6 
Valine -30.7±0.7  -29.7±0.4 -27.9±0.9 
Isoleucine -20.4±2.1  -17.7±0.9 -19.4±1.5 
Leucine -34.9±0.7  -33.4±1.7 -33.4±1.7 
Threonine -14.1±1.7  -11.4±1.5 -11.7±2.6 
Phenylalanine -30.2±0.7  -30.1±0.4 -28.7±1.5 

LDA (%) 
    Bulk δ13C 66.7  33.3 (83.3) 82.1 (82.1) 

Essential AA δ13C 94.4  100.0 (100.0) 96.4 (89.3) 
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Table 2.  

Breeding site 

South Orkney 
Islands   South Shetland Islands 

  

Western Antarctic 
Peninsula 

Point Martin, 
Laurie Is.   Admiralty Bay, 

King George Is. 
Cape Shirreff, 
Livingston Is. 

Half Moon Is., 
Livingston Is.   

Orne Harbour, 
Arctowski 
Peninsula 

Lat., Long. 60.76°S, 44.68°W  62.17°S, 58.45°W 62.47°S, 60.78°W 62.58°S, 62.58°W  64.62°S, 62.53°W 

n 20 (0)  20 (15) 20 (19) 20 (0)  20 (0) 

δ13C (‰)        
Valine -27.9±1.8  -28.5±1.1 -27.8±1.0 -27.2±1.3  -27.2±2.1 

Isoleucine -18.8±1.9  -19.5±2.0 -19.1±1.5 -19.5±2.6  -21.0±1.6 

Leucine -32.7±2.1  -33.3±1.7 -33.5±1.6 -32.4±1.8  -33.9±1.6 

Threonine -12.1±3.4  -11.6±2.7 -11.5±2.2 -12.1±2.7  -10.5±4.6 

Phenylalanine -30.2±1.9  -29.1±1.2 -28.6±1.6 -30.7±1.6  -30.5±1.6 

LDA (%)        
East 38.9  26.3 5.0 10.5  11.8 

West 61.1  73.7 95.0 89.5  88.2 

Mixing-model (%)        
East 32.6 (2.1-58.7)  23.8 (5.9-41.3) 9.0 (0.0-19.9) 10.0 (0.0-28.5)  11.5 (0.0-32.7) 

West 67.4 (41.3-97.9)   76.2 (58.7-94.1) 91.0 (80.1-100) 90.0 (71.5-100)   88.5 (67.3-100) 






