19 research outputs found
The SOX experiment in the neutrino physics
SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources Cr-51 and Ce-144-Pr-144, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown
Development of dynamic models for neutron transport calculations
A quasi-static approach within the framework of neutron transport theory is used to develop a computational tool for the time-dependent analysis of nuclear systems. The determination of the shape function needed for the quasistatic scheme is obtained by the steady-state transport code DRAGON. The kinetic model solves the system of ordinary differential equations for the amplitude function on a fast scale. The kinetic parameters are calculated by a coupling module that retrieves the shape from the output of the transport code and performs the required adjoint-weighted quadratures. When the update of the shape has to be carried out, the coupling module generates an appropriate input file for the transport code. Both the standard Improved Quasi-Static scheme and an innovative Predictor-Corrector algorithm are implemented. The results show the feasibility of both procedures and
their effectiveness in terms of computational times and accuracy
The SOX experiment: understanding the detector behavior using calibration sources
The SOX experiment investigates the existence of light sterile neutrinos. A solid signal would mean the discovery of the first particles beyond the Standard Electroweak Model and would have profound implications in our understanding of the Universe and of fundamental particle physics. In case of a negative result, it is able to close a long standing debate about the reality of the neutrino anomalies. The SOX experiment will use a antineutrino generator placed 8.5~m below the Borexino liquid scintillator detector. In view of the SOX experiment, a precise knowledge of the energy response and the spatial reconstruction of the antineutrino events is very important. Consequently, a calibration campaign of the Borexino detector is foreseen before the beginning of the SOX data taking. This paper briefly reviews the techniques used for calibrate the Borexino detector
Radioactive source experiments in Borexino
Most of the neutrino oscillation results can be explained by the three-neutrino paradigm. However several anomalies in short baseline oscillation data (L/E of about 1 m/MeV) could be interpreted by invoking a light sterile neutrino. This new state would be separated from the standard neutrinos by a squared mass difference \u394m2new 3c 0.1-1 eV2 and would have mixing angles of sin2 2\u3b8ee 73 0.01 in the electron disappearance channel. This new neutrino, often called sterile, would not feel standard model interactions but mix with the others. We present the CeSOX and CrSOX projects to constrain the existence of eV-scale sterile neutrinos by deploying an intense radioactive \u3b2-source next to the Borexino detector
Short distance neutrino oscillations with Borexino
The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr) and anti-neutrinos (Ce). Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e) into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence
Short distance neutrino oscillations with Borexino
International audienceThe Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr) and anti-neutrinos (Ce). Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the nu_e (or nu̅_e) into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence
Recommended from our members
The design, construction, and commissioning of the KATRIN experiment
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns
The search for sterile neutrinos with SOX-Borexino
International audienceThe aim of the SOX-Borexino project is to verify or falsify the existence of eV-scale sterile neutrinos. The existence of sterile neutrinos is suspected because of several anomalies, which were observed in previous experiments. A ~3.7 PBq electron antineutrino source made ofCe will be installed below the Borexino detector at LNGS, Italy, to search for short-baseline oscillations of active-to-sterile neutrinos within the detector volume. Source delivery and beginning of data acquisition is planned for end of 2016, preliminary results are expected already in 2017
SOX: Short Distance Neutrino Oscillations with Borexino
International audienceThe Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of νe (Cr) and νe‾ (Ce). Interacting in the active volume of the liquid scintillator, each beam would create a spatial wave pattern in case of oscillation of the νe (or νe‾ ) into the sterile state, which would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting very stringent limit on its existence
SOX: Short Distance Neutrino Oscillations with Borexino
The Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of (Cr) and (Ce). Interacting in the active volume of the liquid scintillator, each beam would create a spatial wave pattern in case of oscillation of the (or ) into the sterile state, which would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting very stringent limit on its existence