15 research outputs found

    The SOX experiment in the neutrino physics

    Get PDF
    SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources Cr-51 and Ce-144-Pr-144, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown

    Short distance neutrino oscillations with Borexino

    No full text
    International audienceThe Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr) and anti-neutrinos (Ce). Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the nu_e (or nu̅_e) into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence

    SOX: Short Distance Neutrino Oscillations with Borexino

    No full text
    International audienceThe Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of νe (Cr) and νe‾ (Ce). Interacting in the active volume of the liquid scintillator, each beam would create a spatial wave pattern in case of oscillation of the νe (or νe‾ ) into the sterile state, which would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting very stringent limit on its existence

    SOX: Short Distance Neutrino Oscillations with Borexino

    No full text
    The Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of (Cr) and (Ce). Interacting in the active volume of the liquid scintillator, each beam would create a spatial wave pattern in case of oscillation of the (or ) into the sterile state, which would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting very stringent limit on its existence

    The search for sterile neutrinos with SOX-Borexino

    No full text
    International audienceThe aim of the SOX-Borexino project is to verify or falsify the existence of eV-scale sterile neutrinos. The existence of sterile neutrinos is suspected because of several anomalies, which were observed in previous experiments. A ~3.7 PBq electron antineutrino source made of144^{144}Ce will be installed below the Borexino detector at LNGS, Italy, to search for short-baseline oscillations of active-to-sterile neutrinos within the detector volume. Source delivery and beginning of data acquisition is planned for end of 2016, preliminary results are expected already in 2017

    Solar neutrino detectors as sterile neutrino hunters

    Get PDF
    The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this paper we briefly summarise the key elements of the SOX experiment, a program for the search of sterile neutrinos (and other short distance effects) by means of a144Ce-144Pr anti-neutrino source and, possibly in the medium term future, with a51Cr neutrino source

    Monte Carlo simulations in neutrino physics: the example of the SOX experiment

    Get PDF
    International audienceThe SOX project aims to test the existence of light sterile neutrinos. A solid signal would mean the discovery of the first particles beyond the Standard Electroweak Model and would have profound implications in our understanding of the Universe and of fundamental particle physics. In case of a negative result, it is able to close a long standing debate about the reality of the neutrino anomalies. The SOX experiment will use a \mbox{144^{144}Ce-144^{144}Pr} antineutrino generator placed at short distance from the Borexino liquid scintillator detector. Particular emphasis is devoted in describing how a simulation of a neutrino detector is implemented and how it can be used to obtain useful information for the future data analysis
    corecore