11 research outputs found

    Development and validation of a nomogram to predict the five-year risk of revascularization for non-culprit lesion progression in STEMI patients after primary PCI

    Get PDF
    BackgroundAcute ST-segment elevation myocardial infarction (STEMI) patients after primary PCI were readmitted for revascularization due to non-culprit lesion (NCL) progression.ObjectiveTo develop and validate a nomogram that can accurately predict the likelihood of NCL progression revascularization in STEMI patients following primary PCI.MethodsThe study enrolled 1,612 STEMI patients after primary PCI in our hospital from June 2009 to June 2018. Patients were randomly divided into training and validation sets in a 7:3 ratio. The independent risk factors were determined by LASSO regression and multivariable logistic regression analysis. Multivariate logistic regression analysis was utilized to develop a nomogram, which was then evaluated for its performance using the concordance statistics, calibration plots, and decision curve analysis (DCA).ResultsThe nomogram was composed of five predictors, including age (OR: 1.007 95% CI: 1.005–1.009, P < 0.001), body mass index (OR: 1.476, 95% CI: 1.363–1.600, P < 0.001), triglyceride and glucose index (OR: 1.050, 95% CI: 1.022–1.079, P < 0.001), Killip classification (OR: 1.594, 95% CI: 1.140–2.229, P = 0.006), and serum creatinine (OR: 1.007, 95% CI: 1.005–1.009, P < 0.001). Both the training and validation groups accurately predicted the occurrence of NCL progression revascularization (The area under the receiver operating characteristic curve values, 0.901 and 0.857). The calibration plots indicated an excellent agreement between prediction and observation in both sets. Furthermore, the DCA demonstrated that the model exhibited clinical efficacy.ConclusionA convenient and accurate nomogram was developed and validated for predicting the occurrence of NCL progression revascularization in STEMI patients after primary PCI

    Parameter estimation for univariate Skew-Normal distribution based on the modified empirical characteristic function

    No full text
    Parameter estimation for the skew-normal distribution is challenging, since the profile likelihood function of shape parameter has a stationary point at zero, which hampers the use of traditional methods, such as maximum likelihood method. We present a modified empirical characteristic function method to perform parameter estimation for the skew-normal distribution. The proposed approach is flexible and easy to implement. We show that the estimators converge to the true values in probability. The simulation study and data analysis suggest that the proposed method performs well, even for the case of small sample size.</p

    Quantitative analysis of the grain amyloplast proteome reveals differences in metabolism between two wheat cultivars at two stages of grain development

    No full text
    Abstract Background Wheat (Triticum aestivum L.) is one of the world’s most important grain crops. The amyloplast, a specialized organelle, is the major site for starch synthesis and storage in wheat grain. Understanding the metabolism in amyloplast during grain development in wheat cultivars with different quality traits will provide useful information for potential yield and quality improvement. Results Two wheat cultivars, ZM366 and YM49–198 that differ in kernel hardness and starch characteristics, were used to examine the metabolic changes in amyloplasts at 10 and 15 days after anthesis (DAA) using label-free-based proteome analysis. We identified 523 differentially expressed proteins (DEPs) between 10 DAA and 15 DAA, and 229 DEPs between ZM366 and YM49–198. These DEPs mainly participate in eight biochemical processes: carbohydrate metabolism, nitrogen metabolism, stress/defense, transport, energetics-related, signal transduction, protein synthesis/assembly/degradation, and nucleic acid-related processes. Among these proteins, the DEPs showing higher expression levels at 10 DAA are mainly involved in carbohydrate metabolism, stress/defense, and nucleic acid related processes, whereas DEPs with higher expression levels at 15 DAA are mainly carbohydrate metabolism, energetics-related, and transport-related proteins. Among the DEPs between the two cultivars, ZM366 had more up-regulated proteins than YM49–198, and these are mainly involved in carbohydrate metabolism, nucleic acid-related processes, and transport. Conclusions The results of our study indicate that wheat grain amyloplast has the broad metabolic capability. The DEPs involved in carbohydrate metabolism, nucleic acids, stress/defense, and transport processes, with grain development and cultivar differences, are possibly responsible for different grain characteristics, especially with respect to yield and quality-related traits

    Coexistence mechanism of ecological specialists and generalists based on a network dimension reduction method

    No full text
    Abstract As an ecological strategy for species coexistence, some species adapt to a wide range of habitats, while others specialize in particular environments. Such ‘generalists’ and ‘specialists’ achieve normal ecological balance through a complex network of interactions between species. However, the role of these interactions in maintaining the coexistence of generalist and specialist species has not been elucidated within a general theoretical framework. Here, we analyze the ecological mechanism for the coexistence of specialist and generalist species in a class of mutualistic and competitive interaction ecosystems based on the network dimension reduction method. We find that ecological specialists and generalists can be identified based on the number of their respective interactions. We also find, using real‐world empirical network simulations, that the removal of ecological generalists can lead to the collapse of local ecosystems, which is rarely observed with the loss of ecological specialists

    Multi-Walled Carbon Nanotubes for Magnetic Solid-Phase Extraction of Six Heterocyclic Pesticides in Environmental Water Samples Followed by HPLC-DAD Determination

    No full text
    Magnetic multi-walled carbon nanotubes were prepared as magnetic solid-phase extraction (MSPE) adsorbent for the enrichment of six heterocyclic pesticides in environmental water samples, including imidacloprid, triadimefon, fipronil, flusilazole, chlorfenapyr and fenpyroximate. Then six heterocyclic pesticides were separated and determined by high-performance liquid chromatography-diode-array detector (HPLC-DAD). Major factors influencing MSPE efficiency, including the dose of mag-multi-walled carbon nanotubes (mag-MWCNTs), extraction time, solution pH, salt concentration, type and volume of eluent and desorption time were investigated. Under the optimized conditions, the enrichment factor of the method reached to 250. The linearity was achieved within 0.05-10.0 mu g/L for imidacloprid and chlorfenapyr, 0.10-10.0 mu g/L for fipronil, flusilazole, triadimefon and fenpyroximate. Limits of detection were in the range of 0.01-0.03 mu g/L. Good precision at three spiked levels were 1.1-11.2% (intra-day) and 1.7-11.0% (inter-day) with relative standard deviation of peak area, respectively. The developed method was utilized to analyze tap water, river water and reservoir water samples and recoveries at three spiked concentration levels ranged from 72.2% to 107.5%. The method was proved to be a convenient, rapid and practical method for sensitive determination of heterocyclic pesticides

    Accumulation of glycolipids in wheat grain and their role in hardness during grain development

    No full text
    Grain hardness is an important parameter for wheat quality. To understand the role of glycolipids in the formation of grain hardness, the glycolipid contents in wholegrain wheat flour and the starch granule surfaces of oven-dried and freeze-dried hard and soft wheat grain were analyzed. Changes in endosperm structure and amyloplast membrane integrity during grain development were also examined by electron microscopy. The monogalactosyldigylcerol (MGDG) and digalactosyldigylcerol (DGDG) contents of the starch surface were significantly higher in soft wheat than in hard wheat, regardless of the drying method or developmental stage. Throughout grain development, MGDG content was significantly higher in the starch surface of freeze-dried hard wheat than in the starch surface of oven-dried hard wheat. In contrast, the MGDG content of the starch surface was significantly higher in freeze-dried soft grain at 14 and 35 days after anthesis. No significant difference was observed in puroindoline protein (PIN) accumulation in wholegrain flour from wheat that was dried using the two methods, whereas PIN accumulation on the starch surface of freeze-dried grain was lower than that on the starch surface of oven-dried grain. The gap between the amyloplast membrane and starch granules was larger in hard wheat than in soft wheat, as shown by transmission electron microscopy. For the same wheat cultivar, this gap was larger for oven-dried than for freeze-dried grain. The content of polar lipids in the starch surface was closely related to grain hardness, and the breakdown of the amyloplast membrane may determine the location of polar lipids on the starch surface. Keywords: Amyloplast membrane, Endosperm microstructure, Grain hardness, Polar lipid, Whea

    Bile acids and their receptors in metabolic disorders

    No full text
    corecore