62 research outputs found

    Sustainable Supplier Selection in Construction Industry through Hybrid Fuzzy-Based Approaches

    Full text link
    Due to increase in the public and stakeholders’ awareness regarding economic, environmental, and social issues, the construction industry tends to follow the sustainability policies and practices in supply chain management. Hence, one of the most crucial aspects for a construction company in this regard is sustainable supplier selection, and, to this end, an accurate and reliable model is required. In this paper a hybrid fuzzy best-worst method and fuzzy inference system model is developed for sustainable supplier selection. In the first phase of this study, after determining 19 criteria in three main aspects, the final weight of each aspect and criterion is obtained using fuzzy best-worst method approach. In the second phase, the most sustainable supplier is selected by running the weighted fuzzy inference system both in aspect and criterion level, providing more accurate results compared to the use of other available models. Finally, two different tests are employed to validate the results and evaluate the robustness of the proposed model. The novel developed model enables the decision-maker to simulate the decision-making process, reduce the calculations loads, consider a large number of criteria in decision making, and resolve the inherited uncertainties in experts’ responses

    Strategies to Target Tumor Immunosuppression

    Get PDF
    The tumor microenvironment is currently in the spotlight of cancer immunology research as a key factor impacting tumor development and progression. While antigen-specific immune responses play a crucial role in tumor rejection, the tumor hampers these immune responses by creating an immunosuppressive microenvironment. Recently, major progress has been achieved in the field of cancer immunotherapy, and several groundbreaking clinical trials demonstrated the potency of such therapeutic interventions in patients. Yet, the responses greatly vary among individuals. This calls for the rational design of more efficacious cancer immunotherapeutic interventions that take into consideration the “immune signature” of the tumor. Multimodality treatment regimens that aim to enhance intratumoral homing and activation of antigen-specific immune effector cells, while simultaneously targeting tumor immunosuppression, are pivotal for potent antitumor immunity

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    4E assessment of power generation systems for a mobile house in emergency condition using solar energy: a case study

    Get PDF
    In this study, a solar parabolic trough concentrator (PTC) was evaluated as a heat source of a power generation system based on energy (E1), exergy (E2), environmental (E3), and economic (E4) analyses. Various configurations of power generation systems were investigated, including the solar SRC (SRC) and solar ORC (ORC). Water and R113 were used as heat transfer fluids of SRC and ORC system, respectively. It should be mentioned that the proposed solar systems were evaluated for providing the required power of a mobile house in an emergency condition such as an earthquake that was happened in Kermanshah, Iran, in 2016 with many homeless people. The PTC system was optically and thermally investigated based on sensitivity analysis. The optimized PTC system was assumed as a heat source of the RC with two various configurations for power generation. Then, the solar RC systems were investigated based on 4E analyses for providing the power of the mobile house based on various numbers of solar RC units. It was concluded that the solar SRC system could be recommended for achieving the highest 4E performance. The highest value of its energy efficiency was found at 24.60% and of his exergy at 26.37%. On the other hand, the ORC system has energy and exergy efficiencies at 17.64% and 18.91%, respectively, which are significantly lower than the efficiencies of the SRC system. The optimum heat source temperature for the SRC system is found at 650 K, while for the ORC system at 499 K. Moreover, the best economic performance was found with the SRC system with a payback period of 7.47 years. Finally, the CO2 mitigated per annum (φCO2) was estimated at 5.29 (tones year−1), and the carbon credit (ZCO2) was calculated equal to 76.71 ($ year−1)

    Mapping geographical inequalities in oral rehydration therapy coverage in low-income and middle-income countries, 2000-17

    Get PDF
    Background Oral rehydration solution (ORS) is a form of oral rehydration therapy (ORT) for diarrhoea that has the potential to drastically reduce child mortality; yet, according to UNICEF estimates, less than half of children younger than 5 years with diarrhoea in low-income and middle-income countries (LMICs) received ORS in 2016. A variety of recommended home fluids (RHF) exist as alternative forms of ORT; however, it is unclear whether RHF prevent child mortality. Previous studies have shown considerable variation between countries in ORS and RHF use, but subnational variation is unknown. This study aims to produce high-resolution geospatial estimates of relative and absolute coverage of ORS, RHF, and ORT (use of either ORS or RHF) in LMICs. Methods We used a Bayesian geostatistical model including 15 spatial covariates and data from 385 household surveys across 94 LMICs to estimate annual proportions of children younger than 5 years of age with diarrhoea who received ORS or RHF (or both) on continuous continent-wide surfaces in 2000-17, and aggregated results to policy-relevant administrative units. Additionally, we analysed geographical inequality in coverage across administrative units and estimated the number of diarrhoeal deaths averted by increased coverage over the study period. Uncertainty in the mean coverage estimates was calculated by taking 250 draws from the posterior joint distribution of the model and creating uncertainty intervals (UIs) with the 2 center dot 5th and 97 center dot 5th percentiles of those 250 draws. Findings While ORS use among children with diarrhoea increased in some countries from 2000 to 2017, coverage remained below 50% in the majority (62 center dot 6%; 12 417 of 19 823) of second administrative-level units and an estimated 6 519 000 children (95% UI 5 254 000-7 733 000) with diarrhoea were not treated with any form of ORT in 2017. Increases in ORS use corresponded with declines in RHF in many locations, resulting in relatively constant overall ORT coverage from 2000 to 2017. Although ORS was uniformly distributed subnationally in some countries, within-country geographical inequalities persisted in others; 11 countries had at least a 50% difference in one of their units compared with the country mean. Increases in ORS use over time were correlated with declines in RHF use and in diarrhoeal mortality in many locations, and an estimated 52 230 diarrhoeal deaths (36 910-68 860) were averted by scaling up of ORS coverage between 2000 and 2017. Finally, we identified key subnational areas in Colombia, Nigeria, and Sudan as examples of where diarrhoeal mortality remains higher than average, while ORS coverage remains lower than average. Interpretation To our knowledge, this study is the first to produce and map subnational estimates of ORS, RHF, and ORT coverage and attributable child diarrhoeal deaths across LMICs from 2000 to 2017, allowing for tracking progress over time. Our novel results, combined with detailed subnational estimates of diarrhoeal morbidity and mortality, can support subnational needs assessments aimed at furthering policy makers' understanding of within-country disparities. Over 50 years after the discovery that led to this simple, cheap, and life-saving therapy, large gains in reducing mortality could still be made by reducing geographical inequalities in ORS coverage. Copyright (c) 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Recent developments in immunotherapy of acute myeloid leukemia

    Get PDF
    The advent of new immunotherapeutic agents in clinical practice has revolutionized cancer treatment in the past decade, both in oncology and hematology. The transfer of the immunotherapeutic concepts to the treatment of acute myeloid leukemia (AML) is hampered by various characteristics of the disease, including non-leukemia-restricted target antigen expression profile, low endogenous immune responses, and intrinsic resistance mechanisms of the leukemic blasts against immune responses. However, considerable progress has been made in this field in the past few years. Within this manuscript, we review the recent developments and the current status of the five currently most prominent immunotherapeutic concepts: (1) antibody-drug conjugates, (2) T cell-recruiting antibody constructs, (3) chimeric antigen receptor (CAR) T cells, (4) checkpoint inhibitors, and (5) dendritic cell vaccination. We focus on the clinical data that has been published so far, both for newly diagnosed and refractory/relapsed AML, but omitting immunotherapeutic concepts in conjunction with hematopoietic stem cell transplantation. Besides, we have included important clinical trials that are currently running or have recently been completed but are still lacking full publication of their results. While each of the concepts has its particular merits and inherent problems, the field of immunotherapy of AML seems to have taken some significant steps forward. Results of currently running trials will reveal the direction of further development including approaches combining two or more of these concepts

    2017 IEEE Globecom Workshops (GC Wkshps), Proceedings

    Full text link

    IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2020

    Full text link
    Despite the increasing popularity of commercial usage of UAVs or drone-delivered services, their dependence on the limited-capacity on-board batteries hinders their flight-time and mission continuity. As such, developing in-situ power transfer solutions for topping-up UAV batteries have the potential to extend their mission duration. In this paper, we study a scenario where UAVs are deployed as base stations (UAV-BS) providing wireless Hotspot services to the ground nodes, while harvesting wireless energy from flying energy sources. These energy sources are specialized UAVs (Charger or transmitter UAVs, tUAVs), equipped with wireless power transmitting devices such as RF antennae. tUAVs have the flexibility to adjust their flight path to maximize energy transfer. With the increasing number of UAV-BSs and environmental complexity, it is necessary to develop an intelligent trajectory selection procedure for tUAVs so as to optimize the energy transfer gain. In this paper, we model the trajectory optimization of tUAVs as a Markov Decision Process (MDP) problem and solve it using Q-Learning algorithm. Simulation results confirm that the Q-Learning based optimized trajectory of the tUAVs outperforms two benchmark strategies, namely random path planning and static hovering of the tUAVs
    corecore