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5.1  Introduction: The Balance 
of Immune Surveillance 
in the Tumor

In the beginning of the twentieth century, Paul 
Erlich was the first to introduce the concept of a 
vigilant immune system that can be manipulated 
to counteract tumor development [1]. However, 
due to lack of experimental evidence, it was not 
until the 1970s that Frank Macfarlane Burnet pos-
tulated the “immune surveillance theory.” This 
theory brings to light a complex immunological 
mechanism capable of eliminating potentially 
malignant cells, mainly through recognition of 
tumor-specific antigens expressed on tumor cells 
[2]. In later years, several studies describing inter-
actions between the immune system and the devel-
oping tumor have further refined this theory [3, 4].

Indeed, strong evidence supporting the key 
role of immune effector cell populations that are 
either tumor-specific, including B and T cells 
able to recognize tumor-associated antigens 
(TAAs) [5, 6], or non-specific, such as macro-
phages and natural killer (NK) cells, led to the 
sophisticated concept of cancer “immune edit-
ing,” which spans cancer development from 
tumor immune surveillance to tumor immune 
escape [7, 8]. According to this concept, cancer 
development is comprised of three distinct phases 
[9, 10]: (1) the elimination, (2) the equilibrium, 
and (3) the escape, which are more extensively 
reviewed and discussed in separate chapters of 
this book. Particularly, the phenomenon of tumor 
immune escape according to which tumors are 
capable of side-tracking or completely blocking 
host antitumor immunity through interference 
with various components of the immune system 
is of major importance for the development of 
cancer immunotherapies [11]. Recently, several 
immune escape mechanisms have been described 
to hamper antitumor immune responses, either by 
reducing the homing of immune effector cells to 
the tumor site or by suppressing antitumor 
immune functions [12–15]. Therefore, cancer 
immunotherapies should attempt to stimulate 
homing and activation of immune effector cells 
and/or deplete or target pro-tumoral immunosup-
pressive cell populations and pathways.

Immunotherapy of cancer was selected as the 
breakthrough of the year 2013, according to 

Science [16]. Indeed, several groundbreaking 
clinical trials demonstrated the potency of such 
therapeutic approaches in patients. Yet, trials 
have also demonstrated that the responses vary 
greatly between patients. While in a selected 
group of patients immunotherapy leads to a full 
eradication of the tumor, in other patients the 
same treatment does not evoke a response at all. 
Currently, tumor immunologists are searching 
for biomarkers that can be used to describe the 
“immune signature” of the tumor [17, 18]. 
Defining the intratumor immunologic profile 
unique for every tumor type or patient may enable 
personalized immunotherapeutic strategies for 
the effective control of tumor progression [19].

This chapter gives an overview of novel strate-
gies for reversing/reducing immunosuppression in 
the tumor microenvironment, illustrating their tar-
gets and the underlying mechanisms responsible 
for their therapeutic antitumor activity. Prior to this, 
the immunosuppressive mechanisms most widely 
encountered in human tumors are briefly addressed.

5.2  The Balance Is Tilted: 
Mechanisms of Tumor 
Immune Escape

Tumor immune escape is a consequence of the 
so-called “immune editing” process driven by the 
host immune system, through which malignant 
cells sensitive to immune interventions are elimi-
nated, but in some cases allowing immune- 
resistant variants to survive and further develop 
[20, 21]. The mechanisms of tumor immune 
escape can be functionally divided in two catego-
ries: immune tolerance and immunosuppression.

5.2.1  Tolerance Mechanisms

Tumors frequently induce a state of T-cell unre-
sponsiveness toward tumor-associated antigens 
(TAAs), attributed partly to T-cell ignorance, 
since tumor cells express mainly self-antigens. 
Additionally, tumor cells often alter their antigen 
processing/presentation machinery, mostly 
toward a defective T-cell priming in the tumor 
microenvironment [12, 22], but also in adoptive 
strategies to directly block active immune surveil-
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lance, usually with the use of tumor-derived solu-
ble factors [23]. Thus, the main targets of 
tumor-induced tolerance mechanisms are CD4+ T 
cells, cytotoxic CD8+ T lymphocytes (CTLs), 
dendritic cells (DCs), and the antigen presentation 
machinery. Both the relevance of these immune 
populations and the tolerance mechanisms they 
are the targets of are shortly addressed below.

5.2.1.1  CD4+ Helper T Cells and CD8+ 
Cytotoxic T Lymphocytes: 
Negative Polarization 
and Apoptosis

After proper cytokine stimulation, CD4+ mature 
T helper cells play a crucial role in the initiation 
and activation of antitumor immune responses. 
IL-12 polarized, type 1 CD4+ T cells (Th1) pro-
vide help to cytotoxic CD8+ T cells by stimulat-
ing their proliferation and inducing IFN-γ 
secretion once antigen-specific immunity has 
developed [24]. In contrast, IL-4 polarized, type 
2 CD4+ T cells (Th2) secrete cytokines which 
induce neutralizing antibody production by B 
cells [25], thus directing immunity toward a 
tumor-promoting Th2 response, prevalent in the 
context of tumor immunology.

A major mechanism of tumor-induced apop-
tosis of CTLs is via cross-linking between the 
overexpressed death receptor FasR (CD95) on 
the surface of activated effector T cells and its 
correspondent ligand FasL on the surface of 
human tumor cells [26, 27]. Direct tolerization of 
antitumor T cells by tumor cell-induced TGF-β 
signaling is another highly effective mechanism, 
leading to a significantly decreased function and 
frequency of CTLs [23, 28].

5.2.1.2  Defects in the Antigen 
Presentation Process

The main components of the antigen processing 
and presentation machinery are the antigen- 
presenting cells (APCs), TAAs, and major histo-
compatibility complex (MHC) (or human leukocyte 
antigen (HLA) in humans) class I antigens. Tumor-
induced alterations can affect the functionality of 
any of these factors via several mechanisms [29].

DCs are the dominant APCs capable in activat-
ing T cells but also in tolerizing them, depending 
on the local microenvironment [30]. Key determi-
nants of DC competence for antigen processing 

and presentation are their activation and matura-
tion status [31]. In several studies, decreased 
numbers of mature DCs were detected in the sec-
ondary lymphoid organs of tumor- bearing mice 
[32–34]. This observation is consistent with stud-
ies in patients with rapidly growing solid or non-
solid tumors which exhibit significantly lower 
numbers of myeloid mature DCs [35–40]. In 
addition, isolated DC subsets have phenotypes 
similar to immature DCs and reduced expression 
of co-stimulatory molecules [41]. Downregulation 
of these molecules on the surface of DCs leads to 
inappropriate provision of co-stimulatory signals 
required for T-cell activation and interferes with 
the process of cross- presentation and thus results 
in death or anergy of antigen-specific CTLs [41, 
42]. Moreover, DCs exposed to indoleamine-
2,3-dioxygenase (IDO), transforming growth 
factor-beta (TGF-β) or prostaglandins [29, 43], 
have been shown to induce tolerance and anergy 
leading to failure of recognizing tumor cells.

Another means of tumor-mediated immuno-
suppression, as a result of genetic instability of 
tumors over time, is the change of their antigenic 
profile and selective development of “epitope 
loss” [44–46], by which tumors fail to be recog-
nized and eliminated by the immune system. An 
additional effect of this genetic instability is a 
diminished or abolished expression of HLA class 
I antigens and antigen presentation-associated 
proteins [25, 47–54], with a frequency of anti-
genic loss or downregulation ranging from 
around 15% in melanoma lesions up to more than 
50% in primary prostate carcinoma [53, 54].

5.2.2  Immunosuppression 
Mechanisms

The machinery of tumor-induced immunosup-
pression is highly versatile, as it has developed to 
target a large variety of antitumor processes. 
Within the tumor microenvironment, many cell 
populations contribute to the generation of an 
immunosuppressive profile. These include cancer- 
associated fibroblasts (CAFs), myeloid- derived 
suppressor cells (MDSCs), regulatory T cells 
(Tregs), and tumor-associated macrophages 
(TAMs). Furthermore, various tumor-derived 
factors with immunosuppressive activities also 
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contribute to tumor progression. The mechanisms 
by which these cell populations and factors give 
rise to tumor-immune escape are addressed below.

5.2.2.1  Cancer-Associated Fibroblasts 
(CAFs)

CAFs are cells that reside mostly within the 
tumor mass, or are often found within the tumor 
stroma. CAFs facilitate the malignant transfor-
mation process and promote tumor growth, 
angiogenesis, inflammation, and metastasis [55]. 
Similar to normal fibroblasts, CAFs are very het-
erogeneous [56, 57] and therefore difficult to 
classify based on expression of specific markers. 
However, the most widely used markers for CAF 
classification are α-smooth muscle actin 
(α-SMA) and fibroblast activation protein (FAP) 
[58]. Notably, the latter is being studied as a 
potential biomarker associated with poor prog-
nosis in colorectal cancer [59]. Unlike normal 
fibroblasts present in healthy tissues, CAFs are 
more proliferative [60] and secrete various fac-
tors that promote tumor growth (such as CXCL12 
[61], TGF-β [62]) and modulate the expression 
of matrix metalloproteinases (MMPs) [63]. 
Several studies in diverse tumors suggest that 
CAFs are not only promoting tumor growth and 
metastasis but can also enhance drug resistance 
through various mechanisms [64]. In pancreatic 
cancer, CAFs decrease the sensitivity of cancer 
cells to chemotherapy and radiotherapy by secre-
tion of soluble factors [65], while in head and 
neck squamous cell carcinoma, CAFs protect 
cancer cells through secretion of MMPs [66].

5.2.2.2  Myeloid-Derived Suppressor 
Cells (MDSCs)

MDSCs (CD11b+CD14−CD33+) [67] represent a 
heterogenic, bone-marrow-derived cell population 
[68, 69] with an increased frequency in the periph-
eral circulation and tumors of patients with differ-
ent malignancies [70–72]. Migration of bone 
marrow precursors (which are further differenti-
ated to MDSCs) to the tumor zone has been shown 
to be mainly induced by CCL2 secretd by tumor 
cells [73]. Once MDSCs arrive, signals derived 
from the tumor promote their activation [69]. 
MDSCs are characterized by poor phagocytic 
activity, continuous production of reactive oxygen 
species (ROS), nitric oxide (NO), and several anti-

inflammatory cytokines [74]. As immune suppres-
sive cells, they have the capacity to inactivate both 
CD4+ and CD8+ T cells through various mecha-
nisms, including depletion of L-arginine [14], 
decreased tryptophan levels [75], and production 
of ROS [76], iNOS [77], and immunosuppressive 
cytokines, such as IL-10 and TGF-β [78]. Although 
MDSC-mediated suppression mainly affects T-cell 
function, it has also been described that MDSCs 
impair T-cell activation, by inhibiting MHC class 
II expression [79] and thus leading to decreased 
antigen presentation.

5.2.2.3  Regulatory T Cells (Tregs)
Similar to MDSCs, Tregs have also been shown 
to accumulate in tumors of patients with cancer 
[80]. Intratumoral accumulation of Tregs leads to 
poor prognosis for patients with gastric [81] and 
ovarian [80] carcinomas. CD4+ Tregs, character-
ized by the expression of FoxP3 [82], are a highly 
immunosuppressive subset of CD4+ T cells. Two 
major populations of FoxP3+ Tregs have been 
described to date: one “natural” subset, which 
differentiates in the thymus, and one “induced,” 
developed in the periphery from conventional 
CD4+ T cells [83]. Both subsets promote tumor 
immune escape via the following mechanisms: 
(1) by secretion of immunosuppressive media-
tors, including cytokines like IL-10, TGF-β, and 
IL-35 [84, 85]; (2) by induction of effector T-cell 
apoptosis [86], as they promote a status of meta-
bolic disruption secondary to IL-2 [87] depriva-
tion; (3) by engagement of contact-dependent 
mechanisms of immunosuppression (e.g., inhibi-
tion of DC maturation, via CTLA-4 interaction 
with CD80/CD86 on DCs [88]); or by (4) by 
expression of suppressor molecules, such as 
LAG-3, CD39, neuropilin 1, or galectin 1 [89].

5.2.2.4  Tumor-Associated 
Macrophages (TAMs)

TAMs are immune cells that modulate and pro-
mote several immunosuppressive factors in the 
tumor microenvironment [90]. TAMs derive from 
monocytes that are recruited to the tumor [91] 
and, in the presence of Th2 cytokines such as IL-4 
or IL-13, are polarized toward an M2 (“alterna-
tively activated”) non-cytotoxic phenotype [92]. 
Several studies have underlined their capacity to 
cause tumor growth both directly, by production 
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of cytokines that stimulate proliferation of tumor 
cells [93], and indirectly, by stimulating prolifera-
tion of endothelial cells [94]. TAMs are frequently 
found in solid tumors, where they promote remod-
eling of the extracellular matrix and secrete growth 
factors inducing tumor-specific neoangiogenesis 
[95]. Moreover, TAMs are enriched in hypoxic 
areas in most of the solid tumors [96], where they 
support tumor cell proliferation by secreting cyto-
kines and growth factors. Indeed, accumulation of 
macrophages within the hypoxic tumor areas of 
patients is correlated with poor prognosis [97]. On 
the other hand, increasing accumulation of TAMs 
in the normoxic tumor area supports M1-like mac-
rophages, leading to an antitumor immune 
response [98], while blocking colony-stimulating 
factor-1 (CSF-1) signal decreases M2-like polar-
ization and impedes malignant progression result-
ing in regression of established gliomas [99]. 
These processes thus underscore the therapeutic 
relevance of TAM polarization.

Recently, metabolic changes in the tumor micro-
environment have gained attention suggesting that, 
during tumor progression, gradients of extracellular 
metabolites (like lactate) act as tumor morphogens 
that promote M2-like polarization [100, 101]. 
Moreover, it has been suggested that treating TAMs 
with the glycolysis inhibitor 2-deoxyglucose blocks 
the development of TAMs with a pro-metastatic 
phenotype [102]. In the same line, increasing glu-
cose uptake specifically in TAMs outcompetes 
endothelial cells for glucose usage, thus reducing 
vascular hyperactivation and decreasing tumor 
angiogenesis [103], supporting the link between 
metabolism of TAMs and tumor angiogenesis.

TAM-mediated immunosuppression also 
affects T-cell function. Under IL-6 and IL-10 
stimulation, expression of programmed death- 
ligand 1 (PD-L1) is induced in TAMs [104], thus 
impairing T-cell effector activity. Moreover, pro-
grammed death 1 (PD-1) expression on the sur-
face of TAMs correlates with decreased 
phagocytosis [105]. PD-1/PD-L1 blockade 
increases both effector T-cell activity and PD-1+ 
TAM phagocytosis, supporting the use of check-
point inhibitors in cancer treatment. In addition, 
TAM-derived PGE2, IL-10, and IDO play impor-
tant roles in the induction of Tregs. Furthermore, 
TAM-derived CCL17, CCL18, and CCL22 are 
chemotactic factors for Tregs [87], resulting in the 

suppression of T cells in the tumor microenviron-
ment. For example, in the HPV16 E6- and 
E7-expressing TC-1 tumor mouse model, TAMs 
were shown to cause suppression of the antitumor 
T-cell response [106], while their secreted IL-10 
subsequently induced a Treg phenotype [107].

5.2.2.5  Tumor-Derived 
Immunosuppressive Factors

Within the tumor microenvironment, signals that 
stimulate T-cell cytolytic functions can be 
replaced by inhibitory signals secreted by the 
tumor itself as a mechanism of immune escape.

Cytokines
The immunosuppressive cytokines TGF-β and 
IL-10 are produced by Tregs as a means to disbal-
ance T-lymphocyte surveillance of tumor devel-
opment [108, 109], by inhibiting proliferation of 
antitumor effector T cells. Granulocyte- monocyte 
colony-stimulating factor (GM-CSF) is another 
cytokine with immunosuppressive properties. 
Due to these properties, GM-CSF facilitates 
recruitment and expansion of MDSCs in several 
cancer models [110, 111] and promotes genera-
tion and expansion of TAMs [112], despite being 
described as immunostimulatory in other settings 
[113]. The GM-CSF receptor (GM-CSF-R) sig-
nals through signal transducer and activator of 
transcription factor 3 (STAT3) [114], which has 
been linked to elevated PD-L1 expression on 
myeloid cells [115] and regulation of IDO expres-
sion in breast cancer MDSCs [116].

Enzymes
Together with arginase and iNOS, which are 
central for two of the mechanisms of immuno-
suppression exerted by MDSCs, IDO and cyclo-
oxygenase 2 (COX2) also present 
immunosuppressive properties. IDO inhibits 
T-cell activation by depleting tryptophan [117], 
one of the essential amino acids necessary for 
T-cell development, whereas COX2 stimulates 
PGE2 production, a prostaglandin involved in 
conversion of human DCs into immunosuppres-
sive MDSCs [118].

Negative Regulatory Factors
Antitumor immune responses are hampered by 
tumor-induced activation of negative regulatory 
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pathways (also called checkpoints), either associ-
ated with immune homeostasis or actively facili-
tating tumor immune escape [119–121]. 
Frequently, antitumor immunity shares charac-
teristics with chronic immune responses, such as 
T-cell exhaustion [122], mediated by the expres-
sion of multiple inhibitory receptors including 
PD-1 (also known as CD279), cytotoxic 
T-lymphocyte antigen-4 (CTLA-4, CD152), 
lymphocyte- activation gene (Lag-3), T-cell 
immunoglobulin and mucin-domain containing-
 3 (Tim-3), CD244/2B4, CD160, TIGIT, BTLA, 
and others [12, 123–128]. Among them, PD-1 
and CTLA-4 have been extensively studied and 
garnered attention due to the clinical success of 
antibody therapies [129–131]. PD-1 is a member 
of the CD28 superfamily of T-cell regulators, 
expressed on activated CD8+ T cells during prim-
ing or expansion, and functions mainly in periph-
eral tissues, where T cells encounter its two 
corresponding ligands, PD-L1 (B7-H1, CD274) 
and PD-L2 (B7-DC, CD273), members of the B7 
family [132]. PD-L1 is expressed in various cell 
types, including stromal and tumor cells, but also 
in immune cells after exposure to effector cyto-
kines such as IFN-γ, while PD-L2 is mainly 
expressed on DCs in normal tissues [133]. In 
physiological situations, the PD-L1/PD-1 axis is 
an important negative feedback loop ensuring 
immune homeostasis through suppression of 
excessive immune activation [134] and facilita-
tion of immune tolerance to self-antigens [132, 
135, 136]. However, in the tumor, the PD-1/
PDL-1 axis restricts tumor immunity [129]. 
Tumor-specific CD8+ T cells that express lower 
levels of PD-1 showed less exhausted phenotypes 
[137], as compared with tumor-specific CD8+ T 
cells with higher PD-1 expression. Similarly high 
levels of PD-1 have been found on activated 
CD8+ T cells during chronic infections [138]. 
Co-inhibitory signaling via PD-L1 (but not 
PD-L2) is necessary for conversion of naïve 
CD4+ T cells to adaptive CD4+FoxP3+ Tregs. In 
addition, PD-L1 expression in various tumors, 
including breast, ovarian, colorectal, pancreatic 
cancer, and hematologic malignancies, has been 
considered a predictor of poor prognosis 
[139–143].

Although not as disputed as the PD-1/PD-L1 
axis, LAG-3 is also a member of the immuno-
globulin superfamily and is expressed on the sur-
face of activated Tregs, CD8+ T cells, B cells, and 
NKT cells, contributing to tumor immune sup-
pression. Interestingly, Tregs from LAG-3(−/−) 
mice present reduced regulatory activity [144]. 
Lastly, CTLA-4 is a receptor expressed on the 
surface of Tregs and upregulated on activated 
conventional T cells [145, 146]. CTLA-4 trans-
mits an inhibitory signal for T-cell activation by 
competing with the co-stimulatory molecule 
CD28 for binding to their shared ligands CD80 
(B7.1) and CD86 (B7.2), with opposing effects 
[147, 148].

Endothelin Receptors
Aberrant activation of the small bioreactive pep-
tide endothelin 1 (ET1) and its receptors endo-
thelin receptor type A (ETAR) and type B 
(ETBR), by a large array of stimuli, in a para-
crine and autocrine loop [149], has multiple 
implications in the progression of various solid 
tumors, including prostate, colon, ovarian, 
breast, and lung cancer [150–154]. Upon bind-
ing of its ligand ET1, ETAR promotes vasocon-
striction, tumor cell proliferation, and cell 
migration [155–158] through phospholipase Cβ 
and downstream activation of mitogen-activated 
protein kinase family members, including ERK 
signaling [150]. ETAR may also play a role in 
chemoresistance [159]. On the other hand, 
ETBR was shown to inhibit T-cell homing and 
adhesion to the tumor by inducing the suppres-
sion of intracellular adhesion molecule 1 
(ICAM-1) on the endothelial cells [150]. High 
expression of ETAR has been reported in 
patients with prostate cancer and bone metasta-
sis [160], HPV-induced neoplasia [156, 161], 
and renal cell carcinoma [162]. ETBR expres-
sion was associated with the absence of tumor-
infiltrating lymphocytes and decreased survival 
of patients with ovarian cancer [163]. 
Additionally, ETBR overexpression is associ-
ated with an aggressive tumor phenotype in 
melanoma [164, 165] and correlates with tumor 
progression and metastasis of vulvar squamous 
cell carcinoma [166].
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The above-described spectrum of strategies 
developed by tumors to evade the cytolytic activ-
ity of the immune system illustrates the complex-
ity of the tumor immune escape phenomenon and 
its capacity to adapt and particularly target dis-
tinct mechanisms of the antitumor immune 
response. Developing tumors are able to use dif-
ferent functions of the immune system to sustain 
their own growth and to simultaneously build up 
mechanisms which enable them to hide from an 
immune-based attack. Different types of tumors 
develop diverse immune escape mechanisms, 
translating into various degrees of tumor aggres-
siveness. Thus, the complexity of the tumor 
immune escape phenomenon resides in the abil-
ity of human tumors to develop unique signa-
tures, which pose a real challenge for development 
of effective antitumor therapies.

5.3  Shifting the Balance: 
Strategies to Target Tumor 
Immunosuppression

Therapeutic approaches against cancer have 
mainly been oriented on the activation of the 
immune system to directly eliminate tumor cells, 
thus decreasing the tumor load. More recently, 
the importance of cancer-induced immune sup-
pression is being taken into consideration with 
apparent clinical success of antibodies against 
immune checkpoints [129]. Despite the therapeu-
tic potency of those immunotherapies, still only a 
subset of patients exhibit durable responses, sug-
gesting that the main challenge of these strategies 
is the unique immune signature of tumors, which 
further translates into a large variability of tumor- 
induced immunosuppression mechanisms. 
Hence, the starting point of these strategies con-
sists of mapping this immune signature, followed 
by a documented selection of uni- or multimodal 
therapies targeting the predominant immunosup-
pressive mechanisms developed within each 
tumor type. Based on their overall target aim, 
these therapies can be categorized as those which 
attempt to increase homing of effector T cells to 
tumors and those that, directly or indirectly, 
increase antitumor activity of intratumor effector 

T cells, either by overcoming tumor-induced tol-
erance or by overriding the immunosuppression 
mechanisms imposed during tumor development 
(see Table 5.1).

5.3.1  Strategies Targeting Homing 
of Effector T Cells

Some of the tumor immune escape mechanisms 
described above interfere with the proper traf-
ficking of effector T cells from the peripheral cir-
culation or secondary lymphoid organs to the 
tumor site. A reduced homing of these effector 
cells to the tumor will give rise to negative regu-
latory processes leading to tumor progression. 
Several strategies to block these processes and 
enhance intratumor homing of effector cells have 
been proven effective. These include local tumor 
irradiation, blockade of endothelin receptors, 
taxane-based chemotherapy, and antibody- 
mediated targeting of effector CTLs.

5.3.1.1  Local Tumor Irradiation
Local tumor irradiation has long been used as a 
curative treatment for localized cancer and iso-
lated metastasis, but also as a palliative treatment 
in patients with widespread disease. Overall, 
more than 50% of cancer patients receive radio-
therapy, often as adjuvant therapy, in association 
with other therapies such as surgery, hormonal 
therapy [167], chemotherapy, or bone marrow 
transplantation. Radiotherapy has been highly 
effective for certain malignancies, including 
prostate, endometrial, and cervical cancer. 
Recently, irradiation has come to the attention of 
tumor immunologists due to its immunogenic 
properties and potentially antimetastatic effects 
[168–174].

A major immunological effect of local tumor 
irradiation is the induction of cell death [175] that 
results in release of TAAs and danger signals, 
which attract immune cells to the tumor site, thus 
favoring antigen cross-presentation, improved 
DC function, and therefore enhanced antigen- 
specific T-cell priming [170, 176, 177]. 
Furthermore, it has recently been demonstrated 
that, after irradiation, the remaining cancer cells 
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Table 5.1 Types of immunotherapy aimed at targeting various mechanisms of tumor-induced immune suppression

Type of therapy Targeted pathway Achieved effect
Local tumor irradiation Antigen presentation and processing

Release of tumor- associated antigens
Production of proinflammatory cytokines and 
chemoattractants

Enhanced intratumor 
homing of effector CTLsa

Endothelin receptor blockade Restoration of ICAM-1b expression
Chemotherapy
Taxanes

Inhibition of angiogenesis
Induction of programmed cell death
Antigen presentation and processing
TAMsc cytotoxicity

Ab-mediated targeting of CTLsa Tumor and T-cell concomitant antigen binding
Depletion/inactivation therapy
MDSCsd

Tregse

TAMsc

Inhibition of DNA replication
Inhibition of tyrosine kinase signaling
Enzyme inhibition
Inhibition of angiogenesis

Enhanced activity of 
intratumor effector CTLsa

Cytokine therapy
IL-15
IL-7
IL-12

T-cell growth factors
DCsf activation
Vaccine adjuvants

Blockade of negative factors
Anti-CTLA-4g (Ipilimumab)
Anti-PD-1h/anti-LAG3i

Anti-TGFβj

Anti CD40/CD40L

Blockade of T-cell checkpoints
Inhibition of receptor signaling
Induction of T-cell activation
Antigen-presenting cell activation

aCytotoxic T lymphocytes
bIntercellular adhesion molecule 1
cTumor-associated macrophages
dMyeloid-derived suppressor cells
eRegulatory T cells
fDendritic cells
gCytotoxic T lymphocyte-associated protein 4
hProgrammed cell death protein 1
iLymphocyte-activation gene 3
jTransforming growth factor beta

present high levels of co-stimulatory and MHC 
class I molecules that render them more immuno-
stimulatory and susceptible to T-cell-mediated 
killing [178]. Other beneficial effects of local 
tumor irradiation involve the induction of proin-
flammatory cytokines, such as TNF-α, IL-1β, and 
TGFβ [168, 179, 180]; expression of chemo-
kines, like CXC-motif chemokines such as 
CXCL9, CXCL10, CXCL11, and CXCL16 that 
result in chemotaxis of T cells; and induction of 
adhesion molecules and death receptors that 
enhance CTL responses [181, 182]. These 
changes within the tumor microenvironment 
facilitate recruitment of effector T cells to tumors 
via two distinct mechanisms: first, by promoting 
vasculature normalization [183] and, second, by 
stimulating overexpression of endothelial adhe-

sion molecules, such as vascular cell adhesion 
molecule 1 (VCAM-1) [169].

In the last decade, preclinical and human stud-
ies brought forward substantial clinical evidence 
that local tumor irradiation has the capacity to 
activate the immune system. Notably, combina-
tion of immunotherapies and radiation has been 
shown to enhance antitumor responses. 
Preclinical studies in tumor-bearing mice dis-
played that irradiation combined with PD-1 
blockade increased overall survival and decreased 
Treg infiltration [184], when compared with anti- 
PD- 1 treatment alone. Consistent to that combi-
nation of anti-PD-L1 antibody and irradiation 
resulted in substantial tumor regression, together 
with significant reduction of MDSCs within the 
tumors and increased CD8+ T-cell infiltration 

G. Koutsoumpli et al.



69

[185]. Currently, multiple clinical trials are eval-
uating anti-PD-1 and anti-PD-L1 antibodies in 
combination with radiation for cancer treatment, 
but results are not yet published [186]. 
Additionally, after combination therapy of irra-
diation and CTLA-4 blockade [187], lung metas-
tasis was inhibited in a mouse 4T1 primary 
mammary carcinoma. Recently, Vanpouille-Box 
et  al. suggested that, in patients who did not 
respond to treatment with immune-checkpoint 
inhibitors, local tumor irradiation may induce 
tumor-specific CTLs [188]. Clinical studies of 
combination therapies with anti-CTLA-4 anti-
bodies, such as ipilimumab, demonstrated tumor 
regression and improved overall survival, primar-
ily in patients with melanoma but also with lym-
phoma, prostate, or renal cancer [189–194].

Taken together, these preclinical and clinical 
data illustrate that radiotherapy, alone or in com-
bination with other therapies, effectively stimu-
lates the immune system to fight tumor 
development. This occurs by facilitating antigen 
presentation and processing, causing the release 
of TAAs; increasing production of inflammatory 
cytokines, chemokines, and receptors involved in 
recruitment of effector CTLs; and thus enhancing 
migration of these active effector CTLs to the 
tumor site.

5.3.1.2  Blockade of Endothelin 
Receptors

Various studies demonstrated that endothelial 
cells from a variety of human cancers overex-
press the ET1 receptors. Blocking these receptors 
seems a promising strategy to delay tumor devel-
opment or stop tumor cell proliferation. In a 
mouse HPV-induced cervical carcinoma model, 
blockade of ETAR caused inhibition of tumor 
growth [165], mediated by an increase in T-cell 
homing to the tumor site. Moreover, ICAM-1 
downregulation, as an effect of ETBR interaction 
with ET1 [163], is rescued by administration of 
BQ-788, an ETBR small molecule inhibitor 
[149]. Neutralization of ETBR by administration 
of BQ-788, suppressed intercellular communica-
tion and growth of melanoma cells in nude mice 
[165] and significantly increased T cell homing 
to tumors [149, 163]. In fact, selective ETAR 

blockade by atrasentan showed delayed progres-
sion of hormone-refractory prostate adenocarci-
noma [195], enhanced the effect of paclitaxel/
docetaxel treatment in prostate cancer [196], and 
increased the overall survival of patients with 
chronic lymphocytic leukemia B [197].

5.3.1.3  Taxane-Based Chemotherapy
Conventional chemotherapy is considered to act 
through direct killing of tumor cells or by irre-
versible tumor growth arrest. Most chemothera-
peutics interfere with cellular processes, such as 
DNA synthesis and replication, or lead to specific 
cell cycle arrest through microtubule disruption 
and apoptosis induction [198]. Originally, tax-
anes (e.g., paclitaxel, docetaxel) have been cate-
gorized as a class of chemotherapeutic drugs 
which block tumor development upon induction 
of mitotic inhibition through disruption of micro-
tubule functionality. Other studies suggested 
additional antitumor mechanisms, such as bind-
ing to and blocking the functions of the antiapop-
totic molecule Bcl-2 expressed on the surface of 
tumor cells, thus inducing programmed cell death 
[199]. More recently, the idea of chemotherapeu-
tic agents, including taxanes, as enhancers of 
effector CTL homing into the tumor site came 
into place. The immunomodulatory effects of 
chemotherapy span both the innate and the adap-
tive immune systems, highlighting the enhanced 
potential of chemotherapy in combination with 
immunotherapy [198]. For example, treatment 
with the angiogenesis inhibitor paclitaxel resulted 
in an increased infiltration of circulating effector 
T cells into the tumor site, in a human xenograft 
mouse model [200]. Additionally, paclitaxel ther-
apy is associated with tumor regression through 
direct stimulation of TAM cytotoxicity [201] or 
indirect activation of DCs, NK, and tumor- 
specific CD8+ T cells via IL-12, TNF-α, and 
iNOS secretion by TAMs [202]. Taxanes also 
promote antigen presentation in murine bone 
marrow (BM)–DCs and human monocyte- 
derived DCs (moDCS) in vitro via upregulation 
of costimulatory molecules and IL-12p70 [203, 
204]. Additionally, paclitaxel specifically impairs 
the viability and the cytokine production of 
FOXP3+ Tregs [205]. On the other hand, 
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docetaxel induces maturation of DCs in  vitro 
[206] and selective killing of MDSCs in vitro and 
in vivo [207, 208].

5.3.1.4  Antibody-Mediated Targeting 
of Effector CTLs

Monoclonal antibody therapy is a method com-
monly used to functionally inactivate or deplete 
suppressive immune populations such as MDSCs 
or Tregs, as discussed below. However, various 
studies using bispecific monoclonal antibodies 
suggest that they can also exhibit antitumor ther-
apeutic potential. These antibodies are artificial 
proteins composed of fragments of two distinct 
monoclonal antibodies that can bind to two dif-
ferent types of antigens. In cancer immunothera-
pies, they are engineered to simultaneously bind 
to a CTL and a tumor cell. Several examples 
include engagement of CD3, CD28, or CD137 
receptors [209] on the T cells and various tumor 
cell markers, such as epithelial adhesion mole-
cule, and human epidermal growth factor recep-
tor expressed on the tumor cell [210]. Different 
studies have shown the therapeutic potency of 
these strategies in vitro [211] and in vivo [209, 
210, 212–214].

5.3.2  Strategies Targeting 
the Activity of Effector T Cells

Enhancing intratumor homing of immune effec-
tor cells will most likely not be sufficient for an 
effective tumor control, as cells that migrate to 
the tumor site are often anergic or dysfunctional. 
As addressed above, multiple mechanisms within 
the tumor microenvironment, involving a diver-
sity of immunosuppressive cell populations (e.g., 
MDSCs, TAMs or Tregs), negative regulatory 
factors (e.g., CTLA-4, PD-1, PDL-1), as well as 
cytokines and enzymes (e.g., TGF-β and IDO), 
have been implicated in generating this immune 
suppressive tumor microenvironment.

To increase the efficacy of immunotherapies 
and rationally develop novel strategies which 
enhance the activity of intratumor effector T 
cells, both inhibition of tolerance mechanisms 
and restriction of tumor-induced immune sup-

pression should be targeted. To effectively target 
the above-described negative regulatory mecha-
nisms, several strategies have been studied. An 
overview of the immunotherapeutic interventions 
that are most widely studied preclinically as well 
as in clinical trials will be addressed.

5.3.2.1  Circumventing Activity 
of Suppressive Immune 
Populations: Depletion or 
Inactivation Therapy

One commonly used mechanism to target innate 
as well as adaptive antitumor immunity is manip-
ulation of the immune suppressive functions of 
MDSCs, Tregs, or TAMs. A more intrusive alter-
native, however extremely efficient, is depletion 
of suppressive immune populations. Different 
depletion methods, with specificity for the tar-
geted immune population at hand, have been 
developed.

There are several ways to specifically target 
and deplete intratumoral MDSCs [215]. Studies 
using an engineered RNA aptamer that targets 
IL4 receptor alpha (IL4Rα), upregulated on 
MDSCs of tumor-bearing mice, showed delayed 
tumor growth, enhanced T-cell infiltration, and 
MDSC apoptosis [216, 217]. This strategy may 
have promising results, since ILRα expression is 
also elevated in MDSCs in human tumors [218]. 
Another way to deplete MDSCs is with broad- 
spectrum tyrosine kinase inhibitors, such as suni-
tinib [219]. In the TC-1 cervical cancer mouse 
model, combinations of sunitinib with a cancer 
vaccine targeting tumor cells expressing the E6,7 
oncoproteins of HPV, resulted in MDSC deple-
tion and led to enhanced E7-specific CTL fre-
quencies and subsequent tumor eradication [220]. 
Consistent to this, sunitinib also induced reversal 
of Treg elevation, significant reduction of IL4 
production, and increased frequencies of IFN-γ- 
producing T cells [219, 221]. Sunitinib is capable 
of inducing selective MDSC apoptosis, up to 
50%, in patients with metastatic renal cell carci-
noma, thus representing one of the most promis-
ing drugs for reducing tumor-induced immune 
suppression [219, 222]. Treatment with chemo-
therapeutic agents and cytostatic drugs such as 
5-fluorouracil [223, 224] or gemcitabine [225, 
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226], as well as novel strategies, like peptibodies 
[227], have also been described to deplete 
MDSCs.

Another immune suppressive population that 
has been intensively targeted for improving anti-
tumor responses is Tregs. To date, several meth-
ods to deplete Tregs have been developed. 
Depletion of CD4+CD25+ Tregs by monoclonal 
antibody therapy has been achieved in both 
tumor-bearing mice as well as in clinical trials 
[228, 229]. Selective depletion of FoxP3+ Tregs 
in transgenic DEREG (depletion of regulatory T 
cells) mice, in combination with therapeutic 
immunization against melanoma, greatly 
enhanced the antitumor effect [230]. However, 
the potency of a combination of immunization 
and Treg depletion depends not only on the 
involvement of Tregs in the tumor model studied 
but also on the level of Treg induction or activa-
tion in the immunization strategy. For example, 
depletion of Tregs by treatment with an anti- 
folate receptor 4 antibody did not enhance the 
immune response induced by immunization with 
the recombinant viral vector vaccine Semliki 
Forest virus encoding for the early HPV viral 
proteins E6 and E7 (SFVeE6,7) in a mouse model 
of cervical carcinoma [231]. In the clinical set-
ting, a potent method to deplete Tregs by target-
ing their high CD25 expression is by employing 
the immunotoxin denileukin diftitox (Ontak™ 
Ligand Pharmaceuticals), which is approved for 
clinical use in the treatment of cutaneous T-cell 
lymphoma [232]. In combination with immuni-
zation, it has also been used for treatment of other 
types of tumors [233]. Daclizumab (Hoffman-La 
Roche) is another anti-CD25 agent, previously 
used in patients with T-cell leukemia [234] and, 
more recently, in combination with a peptide vac-
cine for treatment of metastatic breast cancer 
[235] and ovarian cancer [236]. However, anti-
 CD25 antibodies can also target activated CD25+ 
effector T cells. Alternatives that circumvent this 
disadvantage are the use of novel antibodies with 
human specificity such as anti-glucocorticoid- 
induced TNF receptor antibodies, or low doses of 
Treg-depleting cyclophosphamide [237].

Regarding TAMs, selective depletion can be 
achieved by different approaches, such as 

blockade of TAM chemoattractant chemokines 
(e.g., blockade of CCL-2 with the inhibitor 
molecule bindarit [238] or immunization with 
a legumain- based minigene DNA vaccine 
[239]). Notably, the most efficient depletion 
method in animal models involves the usage of 
clodronate liposomes. Clodronate liposomes 
are artificial spheres formed by dispersion of 
phospholipid molecules into an aqueous solu-
tion of clodronate bisphosphonate. 
Intraperitoneal or subcutaneous administration 
of clodronate liposomes induced efficient 
depletion (75–92%) of TAMs in different 
murine tumor models [240–244]. Furthermore, 
selective depletion of TAMs is promoted by 
IL-15 and or TGF-α in human primary colorec-
tal adenocarcinomas [245]. In other studies, 
IL-15 has been shown to reverse T-cell anergy 
and to rescue the tolerant phenotype of CD8+ 
T cells [246]. Several other pharmacological 
drugs, such as zoledronic acid and sorafenib, 
may also deplete TAMs and enhance the antitu-
mor responses [247]. Yet it should be noted 
that nonselective depletion of TAMs also 
results in the depletion of tumoricidal macro-
phages, whereby any beneficial effect can be 
counteracted. Novel strategies that repolarize 
the protumoral M2-like TAMs to cytotoxic 
M1-like macrophages should be considered.

5.3.2.2  Immunostimulatory Cytokines: 
Cytokine Therapy

In addition to the above-discussed IL-15, various 
other cytokines are viewed as promising immune- 
restorative drugs. IL-7, a survival cytokine cru-
cial for T-cell development in the thymus and 
survival of naïve and memory T-cell homeostasis 
in the peripheral tissues [248], increases the num-
bers of peripheral CD4+ and CD8+ T cells in 
patients [249, 250]. IL-12, a cytokine naturally 
produced by DCs, is a potent immune adjuvant 
promoting IFN-γ release from immune cells and 
thus inducing Th1 polarization and proliferation 
of antitumor effector T cells [251], with encour-
aging results in preclinical studies on diverse 
mouse tumor models, including thyroid cancer, 
bladder cancer, metastatic breast carcinoma, and 
glioma [252–254].
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5.3.2.3  Blockade of Negative 
Regulatory Factors: Antibody 
Therapy

Antibody therapy against developing tumors has 
been employed in the clinics for many years and 
belongs to the category of “molecular targeted 
therapy” of cancer. Despite the emergence of a 
large palette of anticancer monoclonal human-
ized or chimeric antibodies (MABs), only a small 
number are approved for patient use by the Food 
and Drug Administration (FDA). Among them, 
trastuzumab (Herceptin) is a humanized MAB 
targeting ERGR activity, specific for HER-2/neu- 
positive breast cancer and metastatic gastrointes-
tinal cancers [255–257]. Another successful 
example of MABs is Rituximab (Rituxan), a 
human/murine MAB targeting CD20 for B-cell 
lymphoma, lymphocytic leukemia, but also auto-
immune diseases [258, 259]. Due to their low 
toxicity profile and capacity to activate several 
distinct host effector mechanisms [260], these 
monoclonal antibodies are seen as very promis-
ing anticancer drugs. The mechanisms mainly 
employed by these antibodies are direct interfer-
ence with tumor cell progression and cell- 
mediated cytotoxicity by ligation of Fc receptors 
expressed on the surface of different immune 
cells [261].

The blockade of PD-1/PD-L1 interaction by 
several immune checkpoint inhibitors is currently 
being used for a wide range of solid and non- 
solid cancers [262] and has so far exhibited dura-
ble responses without serious toxicity in the 
majority of treated patients. The magnitude of 
clinical responses achieved with checkpoint 
inhibitor therapy implies that patients can have 
preexisting tumor-specific T cells that can be 
reactivated by blocking the PD-1/PD-L1 interac-
tion. Another antibody that has been approved for 
treatment of late stage melanoma is ipilimumab 
(Yervoy), a human monoclonal antibody directed 
against the CTLA-4 expressed on activated T 
cells, as discussed above. Due to its capacity to 
inhibit this negative signaling pathway and con-
tribute to restoration of the antitumor antigen- 
specific immune response, anti-CTLA4 is 
nowadays used as a novel therapy for solid 
tumors [15]. Recently, PD-1 blockade has been 

shown to increase the induction of effector T 
cells in the spleen, prolong T-cell proliferation, 
and enhance recruitment of effector T cells to 
tumor sites. In multimodality therapy regimens, 
PD-1 blockade increased therapeutic efficacy of 
total body irradiation and DC transfer therapy 
[263]. Also, antibody blockade of LAG-3 in two 
murine models of self and tumor-tolerance 
increased the accumulation and effector function 
of antigen-specific CD8+ T cells [264]. Thus, 
combination of MAB therapy against PD-1 or 
LAG-3 with immunization strategies has been 
recently demonstrated to restore the functions of 
tolerized antigen-specific CD8+ T cells [265]. 
Several clinical trials are currently ongoing to 
evaluate responses in patients with cancer fol-
lowing anti-PD-L1 treatment [266–269]. Several 
approaches have been employed to induce high 
avidity effector T cells in an attempt to target the 
inhibition of tumor-induced tolerance. One such 
approach involves blockade of TGF-β-induced 
signaling that has pleiotropic functions in tumor 
initiation, development, and metastasis. Since 
cancer cells display dysregulated TGF-β signal-
ing, TGF-β inhibitors act on TGF-β-responsive 
cells (e.g., fibroblastic, endothelial, and immune 
cells) in the tumor microenvironment. In a xeno-
graft mouse model of prostate cancer, transfer of 
tumor-reactive, TGF-β-insensitive CD8+ T cells 
led to a 50% decrease in average tumor weight, 
when compared with tumors of mice which 
underwent transfer of naïve CD8+ T cells [270]. 
Also, monoclonal antibodies against TGF-β, 
which are nowadays evaluated in clinical trials, 
seem to be very promising antitumor candidates 
as they present little systemic toxicity [271]. 
Clinical results of TGF-β inhibition in a phase II 
study performed in hepatocellular carcinoma 
patients are promising [272]. Additionally, radio-
therapy and chemotherapy can induce TGF-β 
activity, and combined TGF-β inhibition 
enhances tumor sensitivity to chemotherapy and 
radiotherapy [273]. Another approach aimed at 
manipulating TGF-β to improve antitumor 
immune responses involves generation of TGF- 
β- insensitive DC vaccines. Transduced DCs, 
which have been rendered insensitive to TGF-β, 
maintain their normal phenotype, present 
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 upregulated expression of surface co-stimulatory 
molecules (CD80/CD86), and induce potent 
tumor-specific cytotoxic T-lymphocyte responses 
in vivo [274].

Another target for antibody therapy is the 
costimulatory molecule CD40 expressed on vari-
ous APCs and tumor cells. CD40 binds to CD40L 
expressed on T helper cells, resulting in APC 
activation as indicated by HLA classs II upregu-
lation and IL-2 production [275, 276]. Agonistic 
antibodies against CD40 and/or CD40L tested in 
clinical trials seem to have a promising therapeu-
tic potential [277].

5.4  Concluding Remarks

In the last few decades, major progress has been 
achieved within the field of cancer immunother-
apy, highlighting the underlying therapeutic 
potential. However, despite the clinical success 
of antibody therapies against immune check-
points, especially in the context of CTLA-4 and 
PD-1/PD-L1 axis blockade, still only a subset of 
patients shows sustained responses. This illus-
trates the complexity of tumor immunity and the 
interplay between antitumor responses, immune 
tolerance, and immune suppression within the 
tumor microenvironment. For cancer immuno-
therapy to be effective, sufficient homing and 
activation of antigen-specific immune effector 
cells in the tumor and suppression of immune- 
suppressive mechanisms is pivotal. This calls 
for multimodality treatment regimens to achieve 
long-term tumor regression. A desirable, highly 
effective immunization strategy should there-
fore accomplish two purposes. On the one hand, 
it should aim at increasing both the recruitment 
of antigen-specific effector T cells to the tumor 
site and their intratumor arrest for the time nec-
essary to exert their antitumor activity. For this 
purpose, combinations of immunization regi-
mens with ways to enhance homing of immune 
effector cells to the tumor site, such as local 
tumor irradiation, endothelin B receptor block-
ade, antibody- mediated targeting of effector 
CTLs, or taxane-based chemotherapy, could be 
promising strategies. On the other hand, only 

targeting the homing of vaccine-induced effec-
tor T cells to the tumor site might not be enough. 
We may speculate that once these cells have 
reached the tumor, they can be anergized or 
tolerized by diverse immune-suppressive mech-
anisms developed by the tumor itself or by sec-
ondary immune- suppressive populations. To 
counteract this effect, strategies that aim at 
maintaining or potentiating the activity of these 
intratumor antigen- specific effector T cells, 
such as depletion or functional inhibition of 
immune-suppressive populations, or blockade 
of negative regulatory factors are necessary.

Concluding, the development of new multi-
modality strategies in which immunization thera-
pies are combined with effective antitumor 
immunological or conventional approaches 
aimed at increasing homing of immune effector 
cells to tumors and their intratumor activity is of 
crucial importance and represents the next step 
forward in cancer immunotherapy.
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