2,231 research outputs found
Surface resonance of the (2×1) reconstructed lanthanum hexaboride (001)-cleavage plane : a combined STM and DFT study
We performed a combined study of the (001)-cleavage plane of lanthanum hexaboride (LaB6) using scanning tunneling microscopy and density-functional theory (DFT). Experimentally, we found a (2×1) reconstructed surface on a local scale. The reconstruction is only short-range ordered and tends to order perpendicularly to step edges. At larger distances from surface steps, the reconstruction evolves to a labyrinthlike pattern. These findings are supported by low-energy electron diffraction experiments. Slab calculations within the framework of DFT show that the atomic structure consists of parallel lanthanum chains on top of boron octahedra. Scanning tunneling spectroscopy shows a prominent spectral feature at −0.6eV. Using DFT, we identify this structure as a surface resonance of the (2×1) reconstructed LaB6 (100) surface which is dominated by boron dangling bond states and lanthanum d states
The one-dimensional Keller-Segel model with fractional diffusion of cells
We investigate the one-dimensional Keller-Segel model where the diffusion is
replaced by a non-local operator, namely the fractional diffusion with exponent
. We prove some features related to the classical
two-dimensional Keller-Segel system: blow-up may or may not occur depending on
the initial data. More precisely a singularity appears in finite time when
and the initial configuration of cells is sufficiently concentrated.
On the opposite, global existence holds true for if the initial
density is small enough in the sense of the norm.Comment: 12 page
The entangling side of the Unruh-Hawking effect
We show that the Unruh effect can create net quantum entanglement between
inertial and accelerated observers depending on the choice of the inertial
state. This striking result banishes the extended belief that the Unruh effect
can only destroy entanglement and furthermore provides a new and unexpected
source for finding experimental evidence of the Unruh and Hawking effects.Comment: 4 pages, 4 figures. Added Journal referenc
Optimized intermolecular potential for nitriles based on Anisotropic United Atoms model
An extension of the Anisotropic United Atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (–C≡N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile
Local and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion
Recently, there has been a wide interest in the study of aggregation
equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate
diffusion. The focus of this paper is the unification and generalization of the
well-posedness theory of these models. We prove local well-posedness on bounded
domains for dimensions and in all of space for , the
uniqueness being a result previously not known for PKS with degenerate
diffusion. We generalize the notion of criticality for PKS and show that
subcritical problems are globally well-posed. For a fairly general class of
problems, we prove the existence of a critical mass which sharply divides the
possibility of finite time blow up and global existence. Moreover, we compute
the critical mass for fully general problems and show that solutions with
smaller mass exists globally. For a class of supercritical problems we prove
finite time blow up is possible for initial data of arbitrary mass.Comment: 31 page
On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis
In this article we deal with a class of strongly coupled parabolic systems
that encompasses two different effects: degenerate diffusion and chemotaxis.
Such classes of equations arise in the mesoscale level modeling of biomass
spreading mechanisms via chemotaxis. We show the existence of an exponential
attractor and, hence, of a finite-dimensional global attractor under certain
'balance conditions' on the order of the degeneracy and the growth of the
chemotactic function
Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion
For a specific choice of the diffusion, the parabolic-elliptic
Patlak-Keller-Segel system with non-linear diffusion (also referred to as the
quasi-linear Smoluchowski-Poisson equation) exhibits an interesting threshold
phenomenon: there is a critical mass such that all the solutions with
initial data of mass smaller or equal to exist globally while the
solution blows up in finite time for a large class of initial data with mass
greater than . Unlike in space dimension 2, finite mass self-similar
blowing-up solutions are shown to exist in space dimension
Axon initial segment dysfunction in a mouse model of human genetic epilepsy with febrile seizures plus
Febrile seizures are a common childhood seizure disorder and a defining feature of genetic epilepsy with febrile seizures plus (GEFS+), a syndrome frequently associated with Na+ channel mutations. Here, we describe the creation of a knockin mouse heterozygous for the C121W mutation of the ß1 Na+ channel accessory subunit seen in patients with GEFS+. Heterozygous mice with increased core temperature displayed behavioral arrest and were more susceptible to thermal challenge than wild-type mice. Wild-type ß1 was most concentrated in the membrane of axon initial segments (AIS) of pyramidal neurons, while the ß1(C121W) mutant subunit was excluded from AIS membranes. In addition, AIS function, an indicator of neuronal excitability, was substantially enhanced in hippocampal pyramidal neurons of the heterozygous mouse specifically at higher temperatures. Computational modeling predicted that this enhanced excitability was caused by hyperpolarized voltage activation of AIS Na+ channels. This heat-sensitive increased neuronal excitability presumably contributed to the heightened thermal seizure susceptibility and epileptiform discharges seen in patients and mice with ß1(C121W) subunits. We therefore conclude that Na+ channel ß1 subunits modulate AIS excitability and that epilepsy can arise if this modulation is impaired
- …
