Axon initial segment dysfunction in a mouse model of genetic epilepsy with febrile seizures plus

Verena C. Wimmer,1 Christopher A. Reid,1,2 Suzanne Mitchell,1 Kay L. Richards,1 Byron B. Scaf,1 Bryan T. Leaw,1 Elisa L. Hill,1 Michel Royeck,3 Marie-Therese Horstmann,3,4,5 Brett A. Cromer,1 Philip J. Davies,1 Ruwei Xu,1 Holger Lerche,6,7 Samuel F. Berkovic,8 Heinz Beck,3 and Steven Petrou1,2

1Flory Neuroscience Institutes and 1The Centre for Neuroscience, The University of Melbourne, Parkville, Victoria, Australia. 2Department of Epileptology, University of Bonn Medical Center, Bonn, Germany. 3Helmholtz-Institute for Radiation and Nuclear Physics and 4Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany. 5Neurologische Klinik und Institut für Angewandte Physiologie der Universität Ulm, Zentrum Klinische Forschung, Ulm, Germany. 6Abteilung Neurologie mit Schwerpunkt Epileptologie, Hertie-Institut für klinische Hirnforschung, Universitätsklinikum Tübingen, Tübingen, Germany. 7Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg West, Victoria, Australia.

Febrile seizures are a common childhood seizure disorder and a defining feature of genetic epilepsy with febrile seizures plus (GEFS+), a syndrome frequently associated with Na1 channel mutations. Here, we describe the creation of a knockin mouse heterozygous for the C121W mutation of the β1 Na1 channel accessory subunit seen in patients with GEFS+. Heterozygous mice with increased core temperature displayed behavioral arrest and were more susceptible to thermal challenge than wild-type mice. Wild-type β1 was most concentrated in the membrane of axon initial segments (AIS) of pyramidal neurons, while the β1(C121W) mutant subunit was excluded from AIS membranes. In addition, AIS function, an indicator of neuronal excitability, was substantially enhanced in hippocampal pyramidal neurons of the heterozygous mouse specifically at higher temperatures. Computational modeling predicted that this enhanced excitability was caused by hyperpolarized voltage activation of AIS Na1 channels. This heat-sensitive increased neuronal excitability presumably contributed to the heightened thermal seizure susceptibility and epileptiform discharges seen in patients and mice with β1(C121W) subunits. We therefore conclude that Na1 channel β1 subunits modulate AIS excitability and that epilepsy can arise if this modulation is impaired.

Introduction

Na1 channels play vital roles in many aspects of neuronal function, from subthreshold signaling and encoding of information via action potential (AP) initiation and propagation to synaptic transmission and control of brain oscillations. To accommodate this functional diversity, Na1 channels are subject to an array of modulatory influences, notably by β accessory subunits (1, 2), of which 4 have been identified.

β1, in particular, is of considerable interest because mutations in the SCN1B gene cause human epilepsy (3–5), particularly the syndrome of genetic (generalized) epilepsy with febrile seizures (FS) plus (GEFS+). In vitro studies of the human epilepsy mutation β1(C121W) suggest a disease mechanism caused by loss of modulatory function (6, 7). Translation of these findings into neuronal disease mechanisms has proven to be elusive because of our limited understanding of β1 neurobiology. While β1 coexpression has been shown in some studies to modulate Na1 channel function, these findings are somewhat inconsistent (3, 8–12). Furthermore, a recent publication was able to demonstrate β1 localization in the axon initial segments (AIS) of cerebellar neurons (13), but the lack of a clear picture of cellular β1 expression patterns in different brain regions is still contributing to our poor understanding of the role of β1 in epileptogenesis (14, 15).

β1 homozygous knockout animals die at around P20 (16), leaving little doubt that β subunits are vital. Nonetheless, these studies have fallen short of defining a precise neuronal or in vivo physiological function (5, 16, 17). We present a knockin mouse model of the β1(C121W) epilepsy mutation that not only sheds light on the in vivo role of wild-type β1 but also provides what we believe is a novel disease mechanism. Heterozygous mice show increased propensity to thermally triggered seizures, analogous to FS seen in human patients carrying the β1(C121W) mutation (3, 4). We demonstrate that the wild-type subunit is localized to the AIS, the site of AP initiation (13, 18–21), and importantly, the β1(W121) mutant is excluded from the membrane of this neuronal compartment. Current clamp recordings revealed increased excitability in neurons of mice heterozygous for the β1(C121W) mutation caused by a temperature-sensitive change in AIS function.

Results

Construction of the mouse model. Knockin mice harboring the β1(C121W) mutation (C387G transversion in exon 3 of genomic sequence) (3) were generated by homologous recombination in mouse embryonic stem cells (Figure 1, A and B; see Methods).

To ensure that the β1(C121W) mutation did not lead to degradation of β1 in vivo, we performed Western blot analysis using a custom-made antibody (see Methods). The antibody specifically recognized β1-EGFP fusion proteins in transfected HEK cells (Figure 1C). Whole-brain extracts of P16 WW [homozygous for the β1(C121W) mutation], CC (wild-type), and CW (heterozygous)
mice showed identical β1 protein levels, suggesting that the mutation did not reduce protein levels (Figure 1C).

CW mice were viable and fertile with normal electrocorticograms (ECoG), gross neuroanatomy, growth, and survival (Figure 1D and Supplemental Figure 1; supplemental material available online with this article; doi:10.1172/JCI42219DS1). WW mice showed a severe phenotype and usually died before P25.

**Heterozygous CW mice have a FS phenotype.** FS are the major clinical presentation in patients heterozygous for the β1(C121W) mutation and occur in more than 80% of subjects, typically in the second year of life and often in combination with a variety of other seizure types as part of the syndrome GEFS+ (3, 4, 22). To assess the “FS” phenotype of CW mice, we increased the core temperature by 1.2 ± 0.15°C in homozygous WW mice relative to CC mice (Figure 2B; CC: n = 46, WW: n = 58; WW: n = 25; CC vs. WW: P < 0.05, CC vs. WW: P < 0.001, Cre vs. WW: P < 0.001), demonstrating that CW and WW mice are more susceptible to thermal challenge than their CC littermates. Prolonged ECoG monitoring of CW and wild-type CC mice did not reveal any interictal epileptiform activity or subclinical seizures; similarly, most patients with the β1(C121W) mutation do not have interictal EEG abnormalities (4). These data indicate that the heterozygous β1(C121W) mutant mice recapitulate FS seen in patients harboring the same mutation.

In contrast, the phenotype observed in WW mice is much more dramatic, with growth retardation, severe tremors, and spontaneous seizures with a markedly abnormal ECoG, similar to Scn1b-knockout mice (16). This growth retardation and perhaps some neurological features may relate to disruption of glucose-stimulated insulin and glucagon release due to disruption of β1-mediated regulation in the pancreas (25).

**β1 is an AIS protein.** We next examined the precise subcellular distribution of β1 subunits using recombinant adenoassociated viruses (AAV) expressing either β1(C121) or β1(W121) with a C-terminal EGFP tag. The function of a β1 C-terminal YFP-tagged protein has been tested electrophysiologically in a heterologous system and found to be identical to that of untagged β1 (26). In addition, the cytosolic red fluorescent protein, tdTomato, was coexpressed to visualize cellular morphology (27).

Because in situ hybridization has shown particularly high Scn1b mRNA levels in the pyramidal cell layers of the hippocampus, upper cortical layers, and the Purkinje cell layer in the cerebellum (14), these areas were targeted for virus-mediated expression. Subsequent to stereotaxic injection of AAV, we studied the subcellular localization of β1(C121)-EGFP, Scn1b, Scn1a, and Scn1b-expressing cortical neurons. Whole-brain extracts of P16 WW, CC, and CW mutant mice. Identical protein levels in all 3 genotypes. (D) Normal ECoGs in somatosensory cortex of P37 CC (black) and CW mice (red).

![Figure 1](http://www.jci.org)  
**Construction of the CW mouse model.** (A) Targeting strategy for creating of the β1(C121W) knockin mouse model. Black triangles, Scn1b exons; white and red triangles, loxP sites; gray arrows, PGK/neo cassettes. Recombination between the 2 loxP sites in the floxed cassette (KII) using 5’ (left), 3’ (middle), and Neo (right) probes. (B) Targeting strategy for creating of the β1(C121)-EGFP knockin mouse model. Black triangles, Scn1b exons; white and red triangles, loxP sites; gray arrows, PGK/neo cassettes. Recombination between the 2 loxP sites in the floxed cassette (KII) using 5’ (left), 3’ (middle), and Neo (right) probes. (C) Western blots. Top panel: untransfected control HEK cells and HEK cells transfected with CDNA coding for mouse β1-EGFP. Bottom panel: whole-brain extracts of P16 WW, CC, and CW mutant mice. Identical protein levels in all 3 genotypes. (D) Normal ECoGs in somatosensory cortex of P37 CC (black) and CW mice (red).
cells, and cerebellar Purkinje neurons (Figure 3, A–D). As expected, counterstaining using antibodies against Na⁺ channel α subunits (Panx) and Ank clearly showed that β1(C121)-EGFP, Na⁺ channel α-subunits, and Ank are all present at the AIS and have a similar overlapping distribution (Supplemental Figure 3). Magnification of single confocal frames near the center of the AIS allowed visualization of the plasma membrane and cytosol. β1(C121)-EGFP localized with both Na⁺ channel α subunits and Ank, and all were AIS membrane delimited (Figure 3E). These observations suggest collectively that native β1 is targeted to the AIS membrane, with less membrane expression in other neuronal compartments. 

β1(W121) is not found in the AIS membrane. β1(W121)-EGFP expression revealed a dramatically different distribution compared with wild-type expression (Figure 3, F–I, and Supplemental Figure 2). β1(W121)-EGFP was not detected in AIS membranes (Figure 3, F–I, and Supplemental Figure 2), although it was occasionally found in small clusters within the cytosol of the AIS (Figure 3J). These β1(W121)-EGFP clusters did not colocalize with Na⁺ channel α subunits and Ank, and all were AIS membrane delimited (Figure 3E). These observations suggest collectively that native β1 is targeted to the AIS membrane, with less membrane expression in other neuronal compartments.

The CW mutation does not affect AIS targeting of Na⁺ channel α subunits. In order to assess whether the exclusion of mutant β1(W121) subunits from the AIS has an impact on trafficking of the pore-forming Na⁺ channel α subunits, we examined the detailed distribution of the 3 α subunits known to reside in the AIS, Naₐ.1.1, Naₐ.1.2, and Naₐ.1.6 (28, 30–32). In tissue from wild-type CC mice, the distributions of these α subunits were similar to previous reports. Naₐ.1.1 was not found in pyramidal neurons and was exclusively found to localize to the proximal part of the AIS of inhibitory neurons (Figure 4A) (refs. 30, 33; but also see ref. 31). In pyramidal neurons, Naₐ.1.2 was distributed evenly along the AIS (Figure 4B) (28) and was found in pyramidal neurons across the entire hippocampus, whereas Naₐ.1.6 was concentrated in the distal region of the AIS (Figure 4C) (30, 31). Interestingly, neither Na⁺ channel nor Ank distributions were changed in tissue from heterozygous CW (data not shown) or homozygous WW mice (Figure 4, D–F). AIS morphology, length, and diameter were also identical in CC, CW, and WW tissue (Supplemental Figure 3). These results show that exclusion of β1 subunits from the AIS due to homozygous C121W mutations does not affect α subunit targeting. This raised the following question: how does the absence of mutant β1(C121W) from the AIS membrane impact the functional properties of the neurons and, specifically, of the AIS?

CW neurons are more excitable. We focused our functional experiments on heterozygous CW mice, because human GEFS⁺ families with SCN1B mutations display autosomal dominant inheritance (4), with a single mutant allele sufficient for expression of FS. Subiculal pyramidal neurons were chosen because they are implicated in epileptogenesis and display burst firing and single spike firing that may be differentially impacted by the β1(C121W) mutation. As described previously (34), we found that most subicular pyramidal neurons generated initial intrinsic bursts to current injections (400 ms current steps in 20 pA increments, –100 pA to +280 pA, at 34°C), thereafter displaying tonic firing (Figure 5, A and B, and Supplemental Figure 4).

There was no difference in the total number of burst events (n = 13 neurons each; P = 0.74) and the frequency of APs within bursts (n = 13 neurons each; P = 0.33) when comparing CC and CW neurons (Supplemental Figure 4). However, the average burst duration was longer for CW neurons (Figure 5C; P = 0.038 or less for multiple Student’s t tests; population average, P = 0.00019) with a concomitant increase in the number of APs per burst (Figure 5D; P = 0.0065).

Subsequent to the burst, the tonic firing frequency was increased in CW compared with CC mice (Figure 5E; P = 0.019 or less for multiple Student’s t tests). Accordingly, input-output (I/O) curves showed a significantly increased spike gain in CW neurons for drive currents of less than 150 pA (Supplemental Figure 4; P = 0.0041 or less for multiple Student’s t tests). In addition, CW neurons begin to fire APs at lower drive currents than CC cells (Supplemental Figure 4; 60–80 pA).

For the next series of experiments, the first AP in each sweep was analyzed (termed first AP hereafter, see Methods). The threshold for AP initiation measured for first APs was on average 2.7 mV more negative in CW compared with CC cells (Figure 5F; CC, –48.7 ± 0.3 mV, CW, –51.4 ± 0.2 mV; CC, n = 121 APs, CW, n = 140; P = 0.0001). The amplitude of first APs was significantly higher in CW mice (Figure 6A; CC, 85.28 ± 0.2914 mV, CW, 97.52 ± 0.1081 mV; CC, n = 97 APs, CW, n = 118; P < 0.0001). Within each genotype, first AP half-
**Figure 3**
The AIS localization of β1 is disrupted by the C121W mutation. Green indicates virally expressed β1(C121)-EGFP (A–E) or mutant β1(W121)-EGFP (F–J). Gray shows AIS visualized by immunostaining against Ank. Red shows virally expressed tdTomato (A–D and F–I) or Panα staining (E and J). Merge of the 3 channels with Ank is depicted in blue. (A) Pyramidal neurons in CA3 region of the hippocampus. (B) Pyramidal neurons in hippocampal subiculum (Subi). (C) Layer 2/3 pyramidal neuron in primary somatosensory cortex (S1). (D) Purkinje cell (PC) in cerebellum. Arrows indicate AIS containing β1(C121)-EGFP. (E) High magnification of plasma membrane delineating the AIS in a CA3 pyramidal neuron; membrane colocalization of β1(C121)-EGFP with Na⁺ channel α subunits and Ank. (F–I) As in A–D for β1(W121)-EGFP. Arrows show that β1(W121) does not localize to AIS, identified by anti-Ank staining. (J) Proximal β1(W121)-EGFP clusters do not colocalize with Na⁺ channel α subunits or Ank, indicating intracellular retention. Scale bars: 20 μm (A–D, F–I); 1 μm (E and J).
The j1(C121W) mutation does not affect AIS targeting of α subunits. Green shows staining against Na⁺ channel α subunit; red shows staining against Ank. Left columns, wild-type (CC) tissue; right columns, homozygous mutant (WW) tissue. (A and D) Na⁺,1,1 in proximal axon of inhibitory neuron (IN, molecular layer in hippocampus). (B and E) Na⁺,1.2 is evenly distributed in pyramidal cell AIS (CA3). (C and F) Na⁺,1.6 gradient with maximum in distal AIS (the “appendage” visible in F is an AIS crossing in close proximity, CA3). Scale bar: 5 μm.
revealed a striking hyperpolarizing shift in AP threshold (Figure 7A). Furthermore, the AIS membrane potential acceleration and AIS to soma delay also increased with hyperpolarizing changes in $V_{1/2}$ of Na$^+$ conductance (Figure 7B). These changes in AP properties mirror the physiological changes seen in the CW neurons as compared with CC controls.

A sensitivity analysis of the model was undertaken at a range of conductance ratios from 1 to 15 (AIS/soma Na$^+$ conductance; Figure 7, C–E). AP threshold varied strongly with $V_{1/2}$ of the AIS Na$^+$ conductance and in a less pronounced manner with the AIS/somatic conductance ratio (Supplemental Figure 5). The effect of $V_{1/2}$ on the AIS acceleration peak was greater with increasing conductance ratio (Figure 7C). Interestingly, the effect of $V_{1/2}$ on the somatic acceleration peak decreased with increasing conductance ratio (Figure 7D). This suggests that at realistic AIS/soma conductance ratios (approximately 15–20) (36, 37), selective modulation of $V_{1/2}$ at the AIS only affects AIS acceleration and spares the somatic acceleration, which is similar to the physiological data shown in Figure 6. The axo-somatic conduction latency was clearly increased with increasing shift in $V_{1/2}$ over a range of densities (Figure 7E). Collectively, these modeling results indicate that a shift in $V_{1/2}$ of AIS Na$^+$ channels can serve as a unifying mechanism, explaining the major changes in AP initiation seen in CW mice.

**Discussion**

Despite a growing body of basic and clinical data, the precise physiological and pathological role of the Na$^+$ channel β1 subunit has remained elusive. Here, we present a β1(C121W) knockin mouse model that provides insight into the function of the β1 subunit in modulating neuronal excitability and reveals what we believe is a novel mechanism of increased human seizure susceptibility.

In extension of previous data showing AIS localization of β1 in cerebellar neurons (13), we provide evidence that β1 localizes to neuronal AIS membranes in all cell types examined, including cortical and hippocampal neurons. β1 is thus well positioned to modulate the α subunits that are concentrated at the AIS (28, 37). Furthermore, the β1(C121W) mutation causes a striking change in the subcellular localization of mutant β1 subunits, completely disrupting AIS membrane targeting. Contrary to other studies (13, 16), the subcellular localization of Na$^+$ channel α subunits was not affected by disruption of β1. Our results are consistent with data showing that Ank-binding motifs in Na$^+$ channel α subunits are both necessary and sufficient for AIS targeting (38). In addition, discrepancies between recent findings in cerebellar neurons may be due to cell-type–specific roles of β1, and the reduction of Na$^+_V1.6$ expression in only approximately 50% of Purkinje cells suggests the existence of an additional, β1-independent AIS-targeting mechanism (13).

Interestingly the majority of reported disease-causing mutations of β1 (C121W, R85C, R85H, R125C, E87Q I70_E74del) (3, 4, 39, 40) occur within the immunoglobulin-like domain. This domain is important in mediating the interaction of β1 with cellular adhesion molecules.
molecules (CAMs) (15, 41) as well as ECM molecules (42) that are found at or in close proximity to the AIS, suggesting that binding of the extracellular domain of β1 to AIS CAMs and ECM molecules is important in sequestering β1 subunits to the AIS, but not to other subcellular compartments. Hence, altered AIS targeting, due to disruption of the immunoglobulin-like domain, may be a common pathogenic pathway in epilepsy patients with underlying β1 mutations. The importance of the immunoglobulin-like domain to targeting is supported by earlier observations on human missense mutations in this domain of the L1 neural cell adhesion molecule (L1CAM), where they disrupt L1CAM surface expression, leading to a variety of congenital neurological syndromes (43).

Viral expression studies suggest that AIS β1 subunits would be reduced in heterozygous CW mice and this reduction may contribute to the observed increases in neuronal and AIS excitability. Our modeling data suggest that the simplest explanation for these results is an increase in excitability of the AIS mediated by an increase in the voltage sensitivity of opening of AIS Na+ channels. This could be considered a “gain-of-function” change for Na+ channel α subunits precipitated by the “loss-of-function by absence” of β1(121W) from the AIS membrane. AP threshold changes of only a few mV are sufficient to cause substantial changes in the amount of dendritic input required to trigger APs, and β1 subunits are well positioned to exert this level of control in both excitatory and inhibitory neurons (44).

Indeed, some previous publications show that β1 subunits caused a shift of the voltage dependence of Nav1.2 toward more depolarized potentials (7, 45) consistent with observations in our model, although others did not observe this effect (10, 12, 16). Nav1.2 is widely expressed in pyramidal neurons across the brain including the hippocampus and has been found in both AIS and nodes of Ranvier (28, 32). Although it is fairly well established that Nav1.6 is an abundant brain Na+ channel thought to mediate AP initiation at the distal end of the AIS (36), little is known about the effects of β1 subunits on this channel (46). Curiously, coexpression of rat β1 with rat Nav1.1 channels, found exclusively in inhibitory neurons, causes a hyperpolarizing shift in activation (47), although this shift was not seen when human β1 subunits were coexpressed with rat Nav1.1 channels (5). This raises the possibility...
activation. Elucidation of the in vivo role of Na channels themselves may be important participants in FS genesis. We hypothesize that in subicular pyramidal neurons of CW mice, Na+ channels exist in a state of increased excitability due to reduced amounts of proinhibitory modulation by β1. At normal body temperatures, wild-type β1 produced from the C allele in CW mice may be able to control Na+ channel excitability, whereas at febrile temperatures, this balance may be disrupted by the combined effects of increasing Na1.2 conductance and β1 functional null mutation. This idea is supported by our observation that AIS excitability in the heterozygous CW mice is more temperature sensitive than in control CC mice, providing a neuronal compartment level explanation for FS genesis in the CW mice and presumably in patients with this and similar mutations.

In summary, our data implicate β1 as a critical modulator of AIS Na+ channel function and suggest that an epilepsy-causing mutation can increase excitability and alter temperature sensitivity of this important neuronal compartment. The concentration of epilepsy genes at the AIS further suggests that it may represent an important point of convergence for the pathology of FS and perhaps other epilepsy syndromes as well.

Methods

Construction of the mouse model
CW mice were generated by Oogene Pty. Ltd. Homologous recombination of a targeting vector made with C57BL/6J-derived genomic DNA was achieved in C57BL/6 Thy1.1 ES cells. The C121W mutation was introduced by PCR together with an EcoRV restriction site, a PGKNeo selection cassette, and 3 loxP sites (Figure 1A). Targeted clones were identified by PCR screening and confirmed with Southern blotting (Klo Figure 1B).

Three loxP sites were introduced to generate both CW knockin and knockout mice in parallel. When heterozygous KI mice were bred with a Cre-deleter mouse strain, exclusive recombination between loxP sites 1 and 3 yielded only knockout mice. Injection of Cre-expressing plasmid DNA into fertilized eggs (C57BL/6 females × heterozygous KI males) was used to obtain better control over Cre levels and yielded all 3 possible loxP recombination events.

For generation of the CW knockin strain, we selected a founder animal with deleted PGKNeo cassette and intact exon 3 (C121W) (Figure 1B). After demonstrating the correct recombination event between the second and third loxP site (Figure 1A) using the S’ probe, the blot was stripped and reprobed for Neo to verify excision of the PGKNeo cassette. In addition, the blot was tested for genomic integration of the Cre-expressing plasmid using a Cre-specific probe (expected band size if Cre is present: approxi-

![Figure 7](http://www.jci.org) Modeling suggests that wild-type β1 subunits reduce the voltage-dependent opening of AIS Na+ channels. (A) Comparison of first APs elicited by current injection into a neuron model an AIS/soma Na+ conductance ratio of 15. APs are aligned at threshold as defined for the physiological data. Shifts in AIS Na+ channel V1/2 from 0 to −15 mV are color-coded green to black. V1/2 of the soma was held constant. Time bar: 1 ms; Vm bar: 50 mV. (B) Second derivative of the voltage traces shown in A, illustrating AIS-specific changes in AP initiation (cf. Figure 6, D and E). Traces are aligned to the second peak in the second derivative to more clearly demonstrate changes in peak acceleration and axo-somatic delay. (C–E) Influence of changes in V1/2 of AIS relative Na+ current density (AIS/soma Na+ conductance ratios between 2 and 15) on Vm and acceleration reflecting AIS AP initiation (C), somatic AP generation (D), and axo-somatic delay, calculated as the temporal separation of the 2 peaks in the second derivative (E).
mately 10 kb). Cre was only transiently expressed, and the plasmid was not integrated into the genome (Figure 1B).
Mice were routinely genotyped by using PCR of tail DNA (Supplemental Figure 1). Experiments were performed using both male and female mice of greater than 6F generation.

**ECoG and hippocampal depth recordings**
Animal experimentation was approved by the Animal Ethics Committee of the Florey Neuroscience Institutes. Mice were anesthetized with 1%–2% isoflurane and implanted with epidural ECoG electrodes (X lateral of the midline, Y posterior of bregma; S1 X = 3.0 mm, Y = -1.0 mm). Depth electrodes were inserted into the hippocampus at the following coordinates (Z depth from the pia): X = 2.0 mm, Y = -2.0 mm, Z = -1.7 mm. Signals were low-pass filtered at 200 Hz, AC-coupled at 0.1 Hz, and sampled at 1 kHz under various fixation and incubation conditions: 1 commercially available antibody (CA1705, intracellular epitope; Cell Applications), 1 previously published antibody (β1a antibody; extracellular epitope KRRSETTAETFTEW) (15), and 2 custom-made antibodies raised in 2 different rabbits against the same peptide (extracellular epitopes KKRSETTAETFTEW). In Western blots, these antibodies showed several nonspecific bands; in addition, they did not recognize recombinant β1-EGFP when virally expressed as positive control in brain sections and did not show specific (sub-)cellular labeling. Hence, we decided to use viral expression methods.

**Preparation of paraformaldehyde-fixed brain slices and staining methods**
Animals were anesthetized with a lethal dose of sodium pentobarbitone (40 mg/kg) and transcardially perfused with 0.1 M phosphate buffer (PB) followed by PB with 1% (specifically used for NaV1.1, 1.2 and 1.6) or 4% paraformaldehyde. The brain was extracted and either (a) immersed in 30% sucrose, frozen, and cut to 20-µm thickness with a freezing microtome (NaV1.1, 1.2 and 1.6) or (b) used to make coronal vibratome sections of 50- to 100-µm thickness. The following antibodies were used: rabbit anti-AnkyrinG (H-215, 1:500; Santa Cruz Biotechnology Inc.), rabbit anti-Na+ channel subunits (S6936, 1:500, Panet; Sigma-Aldrich), Nav1.1 (clone K74/71; NeuroMab), Nav1.2 (clone K69/3; NeuroMab), Nav1.6 (clone K87A/10; NeuroMab).
In addition, we extensively tested the following antibodies against β1 under various fixation and incubation conditions: 1 commercially available antibody (CA1705, intracellular epitope; Cell Applications), 1 previously published antibody (β1a antibody; extracellular epitope KRRSETTAETFTEW) (15), and 2 custom-made antibodies raised in 2 different rabbits against the same peptide (extracellular epitopes KKRSETTAETFTEW). In Western blots, these antibodies showed several nonspecific bands; in addition, they did not recognize recombinant β1-EGFP when virally expressed as positive control in brain sections and did not show specific (sub-)cellular labeling. Hence, we decided to use viral expression methods.

**Confocal laser scanning fluorescence microscopy**
Confocal image stacks were acquired with an Olympus FV1000 confocal microscope, equipped with 405 nm, 473 nm, and 559 nm diode lasers, using an Olympus ×60 oil objective (NA 1.35). 3D image stacks were recorded considering Nyquist criteria. Stacks were deconvolved using Huygens Essential software (version 2.31; Scientific Volume Imaging). 3D colocalization between Ank and wild-type β1-EGFP or β1(W121) and tdTomato were mixed 1:1 and injected together.

**Confocal laser scanning fluorescence microscopy**
Confocal image stacks were acquired with an Olympus FV1000 confocal microscope, equipped with 405 nm, 473 nm, and 559 nm diode lasers, using an Olympus ×60 oil objective (NA 1.35). 3D image stacks were recorded considering Nyquist criteria. Stacks were deconvolved using Huygens Essential software (version 2.31; Scientific Volume Imaging). 3D colocalization between Ank and wild-type β1-EGFP or β1(W121) and tdTomato were mixed 1:1 and injected together.

**Western blotting**
To test specificity of our custom-made rabbit anti-mouse β1 antibody (see below), HEK cells were transfected with cDNA expressing mouse β1-EGFP. The antibody specifically detected a band of 63 kDa in the transfected cultures (Figure 1C). β1 is glycosylated, resulting in a higher than expected molecular weight on the blot (approximately 63 kDa instead of 53 kDa). The faint band in the untransfected control sample was caused by non-specific binding of the polyclonal antibody at the same molecular weight. In whole-brain extracts of P16 mice, the antibody detected a band of 42 kDa corresponding to native glycosylated β1 protein (Figure 1C) as well as several nonspecific bands at higher molecular weights. Loading controls verified that protein amounts were uniform (data not shown).

The Journal of Clinical Investigation  Volume 120  Number 8  August 2010  2669
For current clamp recordings, brain slices were perfused with oxygenated aCSF at 34 °C or 22 °C. Neurons were visualized and identified with IR-DIC microscopy. The subiculum was located adjacent to the CA1 region of the hippocampus, delineated by lower neuronal density and stratification (Supplemental Figure 4). Pyramidal cells were identified by their larger size (compared with inhibitory neurons) and presence of an apical dendrite.

Somatic whole-cell current-clamp recordings were made with a patch-clamp amplifier (MultiClamp 700A; MDS) using 3–6 MΩm filamented borosilicate micropipettes (GC150F-10; Harvard Instruments) filled with the following solution: 125 mM K-gluconate, 5 mM KCl, 2 mM MgCl₂, 10 mM HEPES, 4 mM ATP-Mg, 0.3 mM GTP-Na, 10 mM tris-phospho-creatine, 10 mM EGTA (pH 7.2, Osm 290 mosmol). Alexa Fluor 488 fluorescent dye (Invitrogen) and Biocytin (2 mg/ml) were included to allow morphological examination.

Standard capacitance compensation and bridge balance techniques were employed. Membrane resistance was between 50 and 100 MΩm for all recordings. 10 minutes after break-in, pClamp (MDS) was used to drive a current-clamp protocol consisting of 20 current steps of 400 ms duration (20 pA incremental steps from –100 pA to 280 pA) with 300 ms baseline recording on either side of the step. A gap of 500 ms occurred between each sweep. Sampling rate was approximately 83 kHz, equaling 1.2 × 10⁵ s/data point.

**Data analysis**

Electrophysiological recordings were analyzed using custom software written in MATLAB (The MathWorks). To minimize the variance of population responses, we selected cells that showed at least 1 burst at the beginning of a new current step (Figure 5, A and B; Supplemental Figure 4).

**AP analysis.** AP baselines were taken from a threshold value defined as 10 mV,ms⁻¹, which was also used to align APs for direct comparison. AP peaks were defined as the first local maxima after baseline. AP amplitudes were calculated from peak Vm minus the baseline. To normalize APs of different recordings, 10 minutes after break-in, pClamp (MDS) was used to drive a current-clamp protocol consisting of 20 current steps of 400 ms duration (20 pA incremental steps from –100 pA to 280 pA) with 300 ms baseline recording on either side of the step. A gap of 500 ms occurred between each sweep. Sampling rate was approximately 83 kHz, equaling 1.2 × 10⁵ s/data point.

**Analysis of AP waveforms.** The recent history of cellular activity has been shown to affect AP properties such as threshold, width, and amplitude (20). To exclude apparent variation in these parameters due to preceding burst or tonic firing we analyzed the first AP in each sweep (“first AP”); however, we found similar results for spikes in tonic firing mode (data not shown).

AP waveforms were isolated by our custom software (100 data points before AP onset to 150 data points past AP peak). First (dV/dt) and second (d²V/dt²) derivatives were calculated numerically. For average AP waveform analysis, APs were aligned to the threshold (10 mV.ms⁻¹) in both axes.

**Statistics**

Data are presented as mean ± SEM. Statistical analysis between 2 independent data sets was performed using a 2-tailed unpaired Student’s t test using Prism 4.0 (GraphPad Software). P < 0.05 was considered significant. Where appropriate, data were tested for normal distribution using the Kolmogorov-Smirnov (KS) test; if data distribution was not normal, nonparametric tests were used. For comparison of multiple data sets, 1-way ANOVA with Bonferroni’s post hoc test was used. Survival curves were compared using the log-rank test. Statistical analysis of second derivative waveforms was carried out by semi-automated detection of local maxima/minima. All detections were visually confirmed.

**Neuronal modeling**

A complex model of a pyramidal neuron was adapted from Royeck et al. (20) and contained biophysically realistic morphology comprising 265 compartments (829 segments) and 15 different distributed Ca²⁺- and/or voltage-dependent conductances. Implementation was carried out within the NEURON (57) modeling environment running on a dual core processor (2.39 GHz core, 2 Gb RAM) under Windows XP. Integration time steps were fixed at 0.01 ms. Full details of the model are available at MODELDB (http://senselab.med.yale.edu/modeldb; accession number: 123927). The Na⁺ current properties were defined as detailed in the Supplemental Methods.

**Acknowledgments**

The authors would like to thank Elena Gazina and Nathan Myhill. This work was supported by NHMRC program grant 400121 (to S. Petrou and S.F. Berkovic), by the European Union (contract number LSH-CT-2006-037315, EPICURE, FP6) and BMBF/NGFNplus (101GS08122 to H. Beck; 101GS08123 to H. Lerche), the Deutsche Forschungsgemeinschaft (SFB-TR3 to H. Beck; Le1030/8-2, /10-1 to H. Lerche), the German Science Foundation (to M.T. Horstmann), funding from Bionomics Ltd. (to S. Petrou), and an Australian Research Council Future Fellowship (to C. Reid).

Received for publication January 5, 2010, and accepted in revised form May 26, 2010.

Address correspondence to: Steven Petrou, Florey Neuroscience Institutes, The University of Melbourne, Parkville 3052, Victoria, Australia. Phone: 0061.3.8341957; Fax: 0061.3.93470446; E-mail: spetrou@unimelb.edu.au.