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émanant des établissements d’enseignement et de
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The one-dimensional Keller-Segel model with fractional diffusion of

cells∗

Nikolaos Bournaveas†, Vincent Calvez‡§

June 24, 2009, in progress

Abstract

We investigate the one-dimensional Keller-Segel model where the diffusion is replaced by a non-local

operator, namely the fractional diffusion with exponent 0 < α ≤ 2. We prove some features related to

the classical two-dimensional Keller-Segel system: blow-up may or may not occur depending on the initial

data. More precisely a singularity appears in finite time when α < 1 and the initial configuration of cells

is sufficiently concentrated. On the opposite, global existence holds true for α ≤ 1 if the initial density is

small enough in the sense of the L
1/α norm.

Keywords. Self-organization, chemotaxis, fractional diffusion, global existence, blow-up.

1 Introduction

Chemotaxis is the directed motion of cells in response to various chemical clues. It plays a key role in develop-
mental biology, and more generally in self-organization of cell populations. Several categories of mathematical
models have been proposed to describe this organization process. Depending upon the level of description
required, micro-, meso- or macroscopic models can be used [21, 7, 22]. Mesoscopic models consist in kinetic
(scattering) equations well-suited for describing the motion of bacteria such as Escherichia coli which undergo a
run and tumble process [9, 3]. Macroscopic models consist in parabolic (drift-diffusion) equations and are well-
suited for describing motion of large cells such as the slime mold amoebae Dictyostelium discoideum [15, 10, 13].
We focus on the macroscopic setting in this paper.

The so-called Keller-Segel model exhibits a very rich behaviour, emphasized by the critical mass phenomenon
arising in two dimensions of space. The Keller-Segel system writes in a simple formulation [16]:

∂tρ(t, x) = ∆ρ(t, x) −∇ · (ρ(t, x)∇c(t, x)) , t > 0 , x ∈ R
d (1.1a)

−∆c(t, x) = ρ(t, x) . (1.1b)

Here ρ(t, x) denotes the cell density and c(t, x) denotes the concentration of the chemical attractant. The first
contribution in the right hand side of (1.1a) expresses the tendency of cells to diffuse under their own Brownian
motion whereas the second term expresses their tendency to aggregate due to the presence of the chemical. In
two dimensions of space the two tendencies are evenly balanced and the global behavior of the solution depends
on the total mass of the cells. More precisely, for M > 8π blow-up occurs in finite time (aggregation overwhelms
diffusion) and for M < 8π solutions are global in time (diffusion wins the competition) [2].

However in one dimension of space diffusion is always stronger than aggregation and blow-up never occurs
for systems such (1.1) [14, 20].

In this paper we study the system (1.1) in one space dimension with the cell diffusion being ruled by fractional
diffusion. The usual Laplacian in (1.1a) is therefore replaced by the fractional Laplacian. The non-local parabolic
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equation writes as following:

∂tρ(t, x) = −Λαρ(t, x) − ∂x (ρ∂xc) , t > 0 , x ∈ R (1.2a)

−∂2
xxc(t, x) = ρ(t, x) , (1.2b)

equipped with suitable initial condition ρ(0, ·) = ρ0 and decay conditions at infinity. For an exponent α ∈ (0, 2],

the positive operator Λα = (−∆)α/2 is defined in Fourier variables by Λ̂αf(ξ) = |ξ|αf̂(ξ). An alternative
representation is given by:

Λαf(x) = cα

∫

y∈R

f(x) − f(y)

|x − y|1+α
dy = cα

∫

h∈R

2f(x) − f(x + h) − f(x − h)

|h|1+α
dh ,

where cα is some normalizing factor.
Non-local operators, and in particular the fractional Laplacian, have received a lot of attention recently

[4, 5, 6]. In biology the motivation comes from the fact that in many cases organisms adopt Lévy-flight search
strategies and therefore dispersal is better modelled by non-local operators [1, 11, 12, 17, 18]. Focusing on the
one-dimensional case may seem unnatural from the biological viewpoint. However we have in mind seeking a
critical mass phenomenon as it has been derived for the two-dimensional classical Keller-Segel model (1.1). It
appears that α = d is the critical fractional exponent to state such a result. Therefore it makes only sense when
d = 2 or d = 1. We partially answer this issue below in the latter situation.

The system (1.2) was first studied in [11] where it was shown that global existence holds true for 1 < α ≤ 2
assuming that ρ0 ∈ L1 ∩ L2 and ρ′0 ∈ L2.

We aim at providing here global existence versus blow-up results in the same spirit as for the dichotomy
arising in the two-dimensional classical Keller-Segel system (1.1). More precisely, we are able to prove that
solutions are global in time in the ’fair-competition’ case α = 1, if the total mass M is assumed to be small
enough. In the case α < 1 we show that solutions may exist globally or may blow-up depending on the initial
data. We exhibit explicit criteria to distinguish between these two alternatives. For the case α > 1 we improve
previous work [11] by weakening regularity hypotheses on the initial data.

Theorem 1 (Global existence). Consider the system (1.2) for 0 < α ≤ 1 with initial data ρ0 ∈ Lp0(R) for
some p0 > 1/α. There exists a constant K1(α) such that the condition,

‖ρ0‖L1/α < K1(α) ,

guarantees existence of global weak solutions.
In addition, regularizing effects act for (1.2), and the density belongs to any Lp space for any positive time
t > 0.
In the case 1 < α ≤ 2, assume ρ0 ∈ Lp0(R) for some p0 > 1. Then solutions are global in time and belong to
any Lp space for all positive time t > 0.

To complete the picture it is natural to look for blow-up results in the super-critical case. We shall prove in
the sequel that the aggregation contribution can overcome the diffusion effect in the case α < 1 under suitable
restrictions on the initial data. However describing the behaviour for initial data having large mass in the case
α = 1 remains open (the constant K2(α) in Theorem 2 below diverges when α → 1).

Theorem 2 (Blow-up). Consider the system (1.2) for 0 < α < 1 in one space dimension with initial data
ρ0 ∈ L1((1 + |x|)dx). There exists a constant K2(α) such that the condition,

(∫

R

|x|ρ0(x) dx

)1−α

≤ K2(α)M2−α ,

excludes global existence of regular solution: a singularity must appear in finite time.

The paper is organized as follows: in Section 2 we prove global existence, beginning with a simple but not
complete argument based on L2 estimates. The proof is then achieved thanks to Lp estimates inspired by [6].
In Section 3 we prove blow-up of solutions. The paper is supplemented by numerical illustrations of the two
above-mentioned phenomena.

Acknowledgements. NB would like to thank the Laboratoire Jacques-Louis Lions of the Université Pierre
et Marie Curie (Paris, France) and the Département de Mathématiques et Applications of the École Normale
Supérieure (Paris, France) for their hospitality and financial support during his sabbatical leave in the spring
semester of 2008, during which part of the research for this paper was done. VC thanks the Centre de Recerca
Matemática (Bellaterra, Spain), for providing an excellent atmosphere of research during the research program
’Mathematical Biology’.
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2 Global existence for small initial data: proof of Theorem 1

We start by stating some estimate which will be widely used throughout this section.

Proposition 2.1 (Interpolation inequality). For any exponents 0 < α ≤ 1 and 1 ≤ p < +∞, the following
Gagliardo-Nirenberg type inequality holds true:

∫

R

ρp+1(x) dx ≤ C(p, α)
∥∥∥ρp/2

∥∥∥
2

Ḣα/2

‖ρ‖1/α . (2.1)

Proof. We distinguish between the cases α < 1 and α = 1. In the former we use first the Hölder inequality to
obtain:

∫

R

ρp+1(x) dx ≤

(∫

R

ρp/(1−α)(x) dx

)1−α(∫

R

ρ1/α(x) dx

)α

≤ C(p, α)
∥∥∥ρp/2

∥∥∥
2

Ḣα/2

‖ρ‖1/α ,

where we have used the Sobolev embedding: Ḣα/2 →֒ L2/(1−α).
In the case α = 1, we can use the following general result [19]: for any λ, µ, s, q, r, θ ∈ R satisfying the

following relations:

1 ≤ s, q ≤ r ≤ ∞ , 0 < θ < 1 , λ >
d

s
−

d

r
, µ <

d

q
−

d

r
,

θ

(
λ −

d

s
+

d

r

)
+ (1 − θ)

(
µ −

d

q
+

d

r

)
= 0.

we have,
‖f‖Lr ≤ C ‖f‖

θ
Ẇ λ,s ‖f‖

1−θ

Ẇ µ,q . (2.2)

Applying that to the particular choice: f = ρp/2, λ = 1/2, µ = 0, s = 2, r = 2(p + 1)/p, θ = 2/r, q = 2/p yields
the result.

Observe that proceeding as above, the exponent p cannot be chosen arbitrarily (the constraint q ≥ 1 forces
p ≤ 2). However, there is a way to extend it to any p ≥ 1 by slightly modifying the argument: using f = ρp/2,
λ = 1/2, µ = 0, s = 2, r = 2(p + 1)/p, θ = 1/(p + 1), q = 2 we get:

(∫

R

ρp+1(x) dx

)p/(2(p+1))

≤ C
∥∥∥ρp/2

∥∥∥
1/(p+1)

Ḣ1/2

(∫

R

ρp(x) dx

)p/2(p+1)

≤ C
∥∥∥ρp/2

∥∥∥
1/(p+1)

Ḣ1/2

(
‖ρ‖1

(∫

R

ρp+1(x) dx

)p−1
)1/2(p+1)

.

Raising this inequality to the power 2(p + 1) leads to the result.

2.1 A priori L
2 estimates

We complete here some existing results first derived by Escudero [11]. We use Gagliardo-Nirenberg type in-
equalities instead of the Sobolev inequality used in [11]. This allows us to study a wider range of α’s. We are
concerned in this section with the global existence of the Keller-Segel system with fractional diffusion of cells
when 1/2 ≤ α ≤ 1, using simple harmonic analysis estimates. This will be extended below in Section 2.2 to any
0 < α ≤ 1. The purpose of this section is to derive simply a priori estimates which guarantee global existence
of solutions and to set the stage for our approach in Section 2.2. The constraints on the exponent α here are
an artefact of the method: in short the interpolation of L1/α between L1 and L2 yields 1/2 ≤ α.

As it is now standard in such systems, we aim at deriving suitable Lp norm of the cell density. Due to the
simple formulation of the fractional diffusion in the Fourier space variable, we opt for p = 2. We will relax this
constraint in the next section. We have the following estimation:

d

dt

1

2
‖ρ(t)‖

2
L2 =

∫

R

(−Λαρ(t, x) − ∂x (ρ(t, x)∂xc(t, x))) ρ(t, x) dx

= −

∫

R

(
Λα/2ρ(t, x)

)2

dx +
1

2

∫

R

ρ3(t, x) dx .
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We then apply the Gagliardo-Nirenberg inequality (Proposition 2.1) for p = 2:

∫

R

ρ(t, x)3 dx ≤ C(2, α)
∥∥∥Λα/2ρ(t)

∥∥∥
2

L2

(∫

R

ρ1/α(t, x) dx

)α

. (2.3)

In the case α = 1 we obtain the decay of the L2 norm providing that the mass is small enough:

d

dt

1

2
‖ρ(t)‖

2
L2 ≤

(
−

1

C(2, 1)M
+

1

2

)∫

R

ρ3(t, x) dx . (2.4)

It follows that ‖ρ(t)‖L2 ≤ ‖ρ0‖L2 , as soon as ρ0 ∈ L2. It is also possible to conclude without assuming ρ0 ∈ L2,
by means of regularizing effects. In fact using interpolation between L1 and L3 it comes out that (2.4) also
implies (when the mass is small enough):

d

dt

1

2
‖ρ(t)‖2

L2 ≤

(
−

1

C(2, 1)M
+

1

2

)
M−1 ‖ρ(t)‖4

L2 .

Therefore ‖ρ(t)‖2 becomes finite in zero time. We shall come back to that later.
In the case α < 1 the Gagliardo-Nirenberg inequality (2.3) implies that:

d

dt

1

2
‖ρ(t)‖

2
L2 ≤

(
−

1

C(2, α)‖ρ(t)‖L1/α

+
1

2

)∫

R

ρ3(t, x) dx .

As opposed to the case α = 1, the quantity ‖ρ(t)‖L1/α is not conserved in time. Therefore we have to develop
an alternative strategy as in [8] for the Keller-Segel in dimension d > 2, where the criterion for global existence
involves the Ld/2-norm. Here we simply use the fact that L1/α can be interpolated between L1 and L2 if
1/2 ≤ α ≤ 1. As a consequence we have:

d

dt

1

2
‖ρ(t)‖2

L2 ≤

(
−

1

C(2, α)M2α−1‖ρ(t)‖2−2α
L2

+
1

2

)∫

R

ρ3(t, x) dx .

Thus if the quantity M2α−1‖ρ0‖
2−2α
L2 is small enough, then ‖ρ(t)‖L2 automatically decays for every time. We will

see later that this criterion can be ameliorated, as the L1/α (before interpolation) appears to be the critical space
for this problem (analogous to Ld/2 in the classical Keller-Segel problem). To derive this improved criterion we
shall understand how the Lp norms of the cell density evolve, using more refined tools for integration by parts.

Remark 2.2. In the case 1 ≤ α ≤ 2, if we assume that ρ0 ∈ L1 ∩ L2 and ρ′0 ∈ L2 we can work similarly as in
[11] to obtain an a-priori estimate on ‖ρx(t)‖L2(R). Then the Sobolev inequality gives a bound on ‖ρ(t)‖L∞.

2.2 A priori L
p estimates

Following [4, 6], the one-dimensional fractional Laplacian can be interpreted as a ‘Dirichlet to Neumann problem’
on the two-dimensional half-space (with an appropriate modification when α 6= 1). Namely it is related to the
following minimization problem. Given a function ρ(x) defined for x ∈ R (and belonging to appropriate
spaces, see [4] for details) find a function ρ∗(x, y) defined on R × (0,∞) coinciding with ρ(x) on the boundary:
ρ∗(x, 0) = ρ(x), which minimizes the weighted functional,

J(u) =
1

2

∫ ∞

0

∫

R

|∇u(x, y)|2y1−α dxdy .

When α = 1 this is nothing but the harmonic extension of ρ to the upper half-space. The fractional Laplacian
is then deduced from the normal derivative of ρ∗(x, y) on the boundary {y = 0} as described below. We will
strongly use this minimization property.

Proposition 2.3 (Integration by parts: fractional diffusion [6]). Assume ρ(x) is regular, then the following
estimate holds true: ∫

R

ρp−1(x)Λαρ(x) dx ≥
4(p − 1)

p2

∥∥∥ρp/2
∥∥∥

2

Ḣα/2

.

Proof. For the sake of completeness, we recall the main lines of the proof of Proposition 2.3. We begin with the
case α = 1 which is somewhat simpler.
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The half-Laplacian. In short, the one-dimensional half-Laplacian Λρ is the normal derivative of the harmonic
extension on the upper-half plane of ρ:

Λρ(x) = −∂yρ∗(x, 0) ,

where

{
−∆ρ∗(x, y) = 0 on R × (0,∞) ,

ρ∗(x, 0) = ρ(x) .

Using this characterization, we are able to integrate by parts and to estimate the following diffusion contri-
bution (which appears in the proof of Theorem 1 below):

∫

R

ρp−1(x)Λρ(x) dx =

∫

R

ρp−1
∗ (x, 0)∇ρ∗(x, 0) · ν dx

=

∫ ∞

0

∫

R

∇ρp−1
∗ (x, y) · ∇ρ∗(x, y) dxdy

=
4(p − 1)

p2

∫ ∞

0

∫

R

|∇ρ
p/2
∗ (x, y)|2 dxdy

≥
4(p − 1)

p2

∫ ∞

0

∫

R

|∇(ρp/2)∗(x, y)|2 dxdy

≥
4(p − 1)

p2

∥∥∥ρp/2
∥∥∥

2

Ḣ1/2

. (2.5)

The α/2−Laplacian. For any 0 < α < 2 the fractional Laplacian Λαρ can be interpreted as follows [4]:

Λαρ(x) = lim
y→0

[
−y1−α∂yρ∗(x, y)

]
,

where

{
−∇ ·

(
y1−α∇ρ∗

)
(x, y) = 0 on R × (0,∞) ,

ρ∗(x, 0) = ρ(x) .

In the same lines as (2.5) we are able to estimate the following diffusion contribution:

∫

R

ρp−1(x)Λαρ(x) dx =

∫

R

ρp−1
∗ (x, 0)y1−α∇ρ∗(x, 0) · ν dx

=

∫ ∞

0

∫

R

∇ρp−1
∗ (x, y) · y1−α∇ρ∗(x, y) dxdy

=
4(p − 1)

p2

∫ ∞

0

∫

R

|∇ρ
p/2
∗ (x, y)|2y1−α dxdy

≥
4(p − 1)

p2

∫ ∞

0

∫

R

|∇(ρp/2)∗(x, y)|2y1−α dxdy

≥
4(p − 1)

p2

∥∥∥ρp/2
∥∥∥

2

Ḣα/2

. (2.6)

Proof of Theorem 1. The case 1 < α ≤ 2 has already been treated in [11] (see Remark 2.4 at the end of the
proof), so we focus on the situation where 0 < α ≤ 1 in the sequel.

L1/α is the critical space. Following the lines of [16] and [8] we estimate the evolution of the Lp norms of
the cell density:

d

dt

1

p
‖ρ(t)‖p

Lp = −

∫

R

ρp−1(t, x)Λαρ(t, x) dx +
p − 1

p

∫

R

ρp+1(t, x) dx

≤ −
4(p− 1)

p2

∥∥∥ρp/2(t)
∥∥∥

2

Ḣα/2

+
p − 1

p

∫

R

ρp+1(t, x) dx .
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Using Proposition 2.1 we obtain:

∫
ρp+1(t, x)dx ≤ C(p, α) ‖ρ(t)‖L1/α

∥∥∥ρp/2(t)
∥∥∥

2

Ḣα/2

, (2.7)

therefore

d

dt

1

p
‖ρ(t)‖p

Lp ≤

(
−

4(p − 1)

p2C(p, α)‖ρ(t)‖L1/α

+
p − 1

p

)∫

R

ρp+1(t, x) dx . (2.8)

Choosing in particular p = 1/α we obtain that the L1/α norm is time-decreasing whenever ‖ρ0‖L1/α is
strictly smaller than 4α

C(1/α,α) .

Regularizing effects. We shall prove within the next lines that the cell density ρ(t, ·) belongs to any Lp

space for arbitrary positive time, provided that the initial Lp0 norm is finite for some p0 > 1/α. The argument
follows the main lines of [16, 8, 6].

First we shall relax the criterion on ‖ρ0‖L1/α to

‖ρ0‖L1/α <
4

p0C(p0, α)
. (2.9)

This ensures that the Lp0 -norm, which is initially finite by assumption, is decreasing in time. As a consequence,
we get the following upper-bound for any truncation k > 0:

‖(ρ(t) − k)+‖L1/α ≤ |{x : ρ(t, x) > k}|α−1/p0 ‖(ρ(t) − k)+‖Lp0 ≤

(
M

k

)α−1/p0

‖ρ0‖Lp0 . (2.10)

Second, we extend the above strategy to the derivation of ‖(ρ(t)−k(p))+‖Lp for some k(p) > 0 to be chosen
later:

d

dt

1

p
‖(ρ(t) − k(p))+‖

p
Lp ≤ −

4(p − 1)

p2
‖(ρ(t) − k(p))+‖Ḣα/2 +

p − 1

p

∫

R

(ρ(t, x) − k(p))p+1 dx

+C(k, p)

∫

R

(ρ(t, x) − k(p))p dx + C(k, p)

∫

R

(ρ(t, x) − k(p))p−1 dx .

The last term can be interpolated between L1 and Lp. The nonlinear contribution of homogeneity p + 1 goes
as previously, except that we shall ensure here that ‖(ρ(t) − k(p))+‖L1/α is strictly smaller than 4/(pC(p, α))
independently of time.

Introduce the notation: Yp(t) = ‖(ρ(t) − k(p))+‖
p
p. We have,

d

dt
Yp(t) ≤

(
−

4(p − 1)

p2C(p, α)‖(ρ(t) − k(p))+‖L1/α

+
p − 1

p

)∫

R

(ρ(t, x) − k(p))p+1
+ dx + O (Yp(t)) + O(1) .

Using the following interpolation inequality:

Yp(t) ≤ M1/p

(∫

R

(ρ(t, x) − k(p))p+1
+ dx

)1−1/p

,

we obtain for k(p) large enough, thanks to (2.10),

d

dt
Yp(t) ≤ −δYp(t)

p/(p−1) + O (Yp(t)) + O(1) ,

where δ is a positive constant, independant of time.
As a standard consequence, the following estimate holds true for any time t smaller than a reference time

T :
Yp(t) ≤ C(T )t1−p ,

where the constant C(T ) does not depend on the initial value Yp(0). These a priori estimates guarantee that
the Lp norms of ρ(t) (p > p0) becomes finite for t > 0.
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Figure 1: Numerical simulation of the one-dimensional Keller Segel system (1.2) in rescaled variables with
α = 1. The solution converges to a self-similar profile (in red). Here mass is subcritical as opposed to Fig. 2.

Remark 2.4 (About the case 1 < α ≤ 2). The present method can also deal with 1 < α ≤ 2, for which
global existence has already been proved in [11]. In fact we shall extend accordingly Proposition 2.1 with α/2
derivatives (α > 1) as following:

∫

R

ρp+1(x) dx ≤
∥∥∥ρp/2

∥∥∥
2β

Ḣα/2

M1+p(1−β) , β =
p

p + α − 1
.

Notice that our strategy requires weaker hypotheses on the initial data (in particular regularizing effects can be
proved as before).

Remark 2.5 (Intermediate asymptotics when α = 1). It is known that for the classical two-dimensional Keller-
Segel system the cell density in space/time rescaled variables converges to a self-similar profile when mass is
subcritical [2]. The proof of this fact strongly uses the energy structure. This question is open for the one-
dimensional Keller-Segel system with half-diffusion under consideration here.
Recall that when only diffusion occurs (without a chemotactic coupling), such a self-similar decay holds true.
This can be seen via the following argumentation in Fourier variables.

First rescale time and space: u(τ, y) = (1 + t)ρ(t, (1 + t)y), where τ = log(1 + t). The new equation reads:

∂τu(τ, y) = −Λu(τ, y) + ∂y(yu(τ, y)) .

This writes in Fourier variable as following:

∂τ û(τ, ξ) = −|ξ|û(τ, ξ) − ξ∂ξû(τ, ξ) .

Or, equivalently,
∂τ (û(τ, ξ) exp(|ξ|)) + ξ∂ξ (û(τ, ξ) exp(|ξ|)) = 0 .

As a consequence, û(τ, ξ) exp(|ξ|) can be integrated along the characteristics outgoing from 0, where û(τ, 0) = M .
This shows that û(τ, ξ) exp(|ξ|) converges to M locally in frequency. Therefore, u(τ, y)/M converges to the
inverse Fourier transform of exp(−|ξ|), which is nothing but the Cauchy density.

Numerical simulations clearly indicate that such a statement is expected to hold true when a chemotactic
contribution is added to the diffusion equation and mass is subcritical (see Fig. 1).

3 Blow-up: proof of Theorem 2

We focus in this section on the regime α < 1, for which blow-up may occur. We exhibit a criterion involving
the mass and the first moment of the initial cell density, in the same spirit as [8].
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Testing the fractional diffusion Keller-Segel against an adequate function φ (regular with slow decay at
infinity to be precised below) writes after symmetrization:

d

dt

∫

R

φ(x)ρ(t, x) dx =
c(α)

2

∫∫

R×R

1

|x − y|1+α
(φ(x) − φ(y))(ρ(t, x) − ρ(t, y)) dxdy

−
1

4

∫∫

R×R

sgn(x − y)(φ′(x) − φ′(y))ρ(t, x)ρ(t, y) dxdy .

(3.1)

Lemma 3.1 (An auxiliary test function). Choose any 0 < β < 1 satisfying α + β > 1. Introduce a C∞,
sub-additive, increasing function φ which satisfies: φ(x) = |x| for |x| ≤ 1 and φ(x) = |x|1−β for |x| ≥ 2. Denote
ω(x) = −Λαφ(x):

ω(x) = c(α)

∫

R

φ(x + h) − φ(x)

|h|1+α
dh .

Then we have the following pointwise estimate for ω:

ω(x) ≤ C(1 + |x|1−β) .

Proof. We split the integral into two parts:

|ω(x)| ≤

∫

|h|<2

|φ(x + h) − φ(x)|

|h|1+α
dy +

∫

|h|>2

|φ(x + h) − φ(x)|

|h|1+α
dh

≤

∫

|h|<2

|φ|W 1,∞

|h|α
dh +

∫

|h|>2

φ(x + h) + φ(x)

|h|1+α
dh

≤ |φ|W 1,∞C(α) +

∫

|h|>2

|h|1−β + 2φ(x)

|h|1+α
dh

≤ C(|φ|W 1,∞ , α) + C(α, β) + C(α)φ(x)

≤ C(|φ|W 1,∞ , α, β)(1 + |x|1−β) .

Proof of Theorem 2. The proof begins with testing the Keller-Segel (3.1) against an auxiliary function φλ(x) =
φ(λx)/λ where φ satisfies the assumptions of Lemma 3.1.

d

dt

∫

R

φλ(x)ρ(t, x) dx =

∫

R

(−Λαφλ(x)) ρ(t, x) dx −
1

4

∫

R×R

sgn(x − y) (φ′
λ(x) − φ′

λ(y)) ρ(t, x)ρ(t, y) dxdy . (3.2)

Thanks to a scaling argument and Lemma 3.1, we have the following estimate:

|Λαφλ(x)| ≤ λα−1C (1 + φ(λx)) .

As a consequence we have for the first contribution in (3.2):

∣∣∣∣
∫

R

(−Λαφλ(x))ρ(t, x)dx

∣∣∣∣ ≤ CMλα−1 + Cλα

∫

R

φλ(x)ρ(t, x) dx .

On the other hand, we can write:

φ(x) = |x| + R(x) , R(x) =

{
0 if |x| < 1
|x|1−β − |x| , if |x| > 2

φ′(x) = sgn(x) + R′(x) .

We have clearly |R′(x)| ≤ Cφ(x), hence:

|R′(λx)| ≤ Cφ(λx) = Cλφλ(x) .
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Therefore, we have for the second contribution in (3.2):

−
1

4

∫

R×R

sgn(x − y) (φ′
λ(x) − φ′

λ(y)) ρ(t, x)ρ(t, y) dxdy = −
1

4

∫

R×R

sgn(x − y) (sgn(λx) − sgn(λy)) ρ(t, x)ρ(t, y) dxdy

−
1

2

∫

R×R

sgn(x − y)R′(λx)ρ(x)ρ(y) dxdy

≤ −
1

2

∫

{(x,y):xy<0}

ρ(t, x)ρ(t, y) dxdy + CMλ

∫

R

φλ(x)ρ(t, x) dx .

Observe that the symmetry assumption on the cell density ρ(t, x) implies the crucial point:

∫

{(x,y):xy<0}

ρ(t, x)ρ(t, y) dxdy = 2

(∫

x<0

ρ(t, x) dx

)(∫

y>0

ρ(t, y) dy

)

=
M2

2
.

We conclude the above estimates on the ‘corrected’ first moment Iλ(t) :=
∫

φλ(x)ρ(t, x)dx:

dIλ

dt
≤ CMλα−1 + CλαIλ(t) −

M2

4
+ CλMIλ(t)

≤
M

4λ
(Cλα − λM) + C (λα + λM) Iλ(t) . (3.3)

We now choose λ such that the terms λα and λM are well-balanced, and such that Cλα−λM = −λM/2, which
is a negative quantity. This leads to λ = (µ/M)1/(1−α), for some constant µ depending on α, β, and the specific
choice of the auxiliary function φ. Inequality (3.3) rewrites:

dIλ

dt
≤ −

M2

8
+ Cµα/(1−α) Iλ(t)

Mα/(1−α)
.

To finish the argumentation, let us observe that imposing a condition of the form

µα/(1−α)Iλ(0) < CM (2−α)/(1−α) , (3.4)

yields that the quantity Iλ must vanish in finite time, which is an obstruction to global existence.
Observe finally that Iλ(0) ≤

∫
R
|x|ρ0(x)dx, hence (3.4) is satisfied if

∫
R
|x|ρ0(x)dx is sufficiently small. This

completes the proof of Theorem 2.

Remark 3.2 (On the constants as α ր 1). Tracking carefully the constants in the preceding proof, it turns out
that µ scales like 1/(1 − α) whereas other constants are indeed of order 1. Thus criterion (3.4) rewrites:

Iλ(0)1−α < C1−α(1 − α)αM (2−α) .

This clearly shows that the previous argument is not expected to be extended to the case α = 1. However
numerical simulations clearly show that a critical mass is likely to occur when α = 1 (see Fig. 2).
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11


