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Abstract. For a specific choice of the diffusion, the parabolic-elliptic Patlak-
Keller-Segel system with non-linear diffusion (also referred to as the quasi-linear
Smoluchowski-Poisson equation) exhibits an interesting threshold phenomenon:
there is a critical mass Mc > 0 such that all the solutions with initial data of
mass smaller or equal to Mc exist globally while the solution blows up in finite
time for a large class of initial data with mass greater than Mc. Unlike in space di-
mension 2, finite mass self-similar blowing-up solutions are shown to exist in space
dimension d ≥ 3.

1. Introduction

In space dimension d = 2, the parabolic-elliptic Patlak-Keller-Segel (PKS) system
is a simplified model which describes the collective motion of cells in the following
situation: cells diffuse in space and emit a chemical signal, the chemo-attractant,
which results in the cells attracting each other. If ρ denotes the density of cells and
c the concentration of the chemo-attractant, the PKS system reads [13, 19]

(1)







∂tρ(t, x) = div [∇ρ(t, x) − ρ(t, x)∇c(t, x)] ,

c(t, x) = (E2 ⋆ ρ)(t, x) , E2(x) = −
1

2π
ln |x| ,

(t, x) ∈ [0,∞) × R
2 .

This model may be seen as an elementary brick to understand the aggregation of
cells in mathematical biology as it exhibits the following interesting and biologically
relevant feature: there is a critical mass above which the density of cells is expected
to concentrate near isolated points after a finite time, a property which is related to
the formation of fruiting bodies in the slime mold Dictyostelium discoideum. Such
a phenomenon does not take place if the density of cells is too low. More precisely,
given a non-negative integrable initial condition ρ0 with finite second moment, the
system (1) has a unique maximal classical solution (ρ, c) defined on some maximal
time interval [0, T ), T ∈ (0,∞]. Its first component ρ is non-negative and the mass
of ρ (that is, its L1-norm) remains constant through time evolution

‖ρ(t)‖1 = M := ‖ρ0‖1 , t ∈ [0, T ) .

It is well-known that, if M < 8 π, the solution to (1) exists globally in time while
it blows up in finite time if M > 8 π, see [3, 6, 11, 12] and the references therein.
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More recently, it was shown that there is global existence as well for the critical mass
M = 8 π, the blowup occurring in infinite time with a profile being a Dirac mass of
mass 8π [1]. When the mass M is above 8π, the shape of the finite time blowup is
not self-similar according to asymptotic expansions computed in [5, 15] (see also [10]
for a related problem in a bounded domain). In addition, there is no integrable and
radially symmetric blowing-up self-similar solution to (1) [18, Theorem 8].

In space dimension d ≥ 3, the system (1) seems to be less relevant from the biolog-
ical point of view as blowup may occur whatever the value of M [9, 17]. This means
that the diffusion is too weak to balance the aggregation resulting from the chemo-
tactic term. It is however well-known that one can enhance the effect of diffusion to
prevent crowding by considering a diffusion of porous medium type which increases
the diffusion of the cells when their density ρ is large. This is the generalised version
of the Patlak-Keller-Segel model considered in, e.g., [2, 4, 22, 23, 24]:

(2)

{

∂tρ(t, x) = div (∇ [ρm(t, x)] − ρ(t, x)∇c(t, x)) ,

c(t, x) = (Ed ⋆ ρ)(t, x) , Ed(x) = cd |x|2−d ,
(t, x) ∈ [0,∞) × R

d ,

where m > 1, cd := 1/((d− 2) σd), and σd := 2 πd/2/Γ(d/2) denotes the surface area
of the sphere S

d−1 of R
d. The system (2) also arises in astrophysics [4] (being then

referred to as the generalised Smoluchowski-Poisson equation), and ρ and c denote
the density of particles and the gravitational potential, respectively.

For (2), it turns out that there is only one critical exponent of the non-linear
diffusion, namely md := 2(d − 1)/d, such that the mass plays a similar role to that
in (1). Indeed, if m > md the diffusion enhancement is too strong and the solutions
always exist globally in time whereas if m < md the diffusion is not strong enough to
compensate the aggregation term and there are solutions blowing up in finite time
whatever the value of the mass [22, 23]. The relevant diffusion is thus achieved in
the case when m = md. In this case, it was proved in [2] that there is a unique
threshold mass Mc > 0 with the following properties: if the mass M = ‖ρ0‖1 of
the initial condition ρ0 is less or equal to Mc, then the corresponding solution to (2)
exists globally in time, whereas given any M > Mc there are initial data ρ0 with
mass M such that the corresponding solution blows up in finite time. Thus, for the
peculiar choice m = md and d ≥ 3, the system (2) exhibits the same qualitative
behaviour as the PKS system (1) in space dimension 2. Still, there is a fundamental
difference as the latter has no fast-decaying stationary solution with mass 8π while
the former has a two-parameter family of non-negative, integrable, and compactly
supported stationary solutions with mass Mc for each d ≥ 3 [2, Section 3].

It is then tempting to figure out whether this striking difference extends above
the critical mass Mc and this leads us to investigate the existence of blowing-up (or
backward) self-similar solutions with finite mass. More precisely, since mass remains
unchanged throughout time evolution, we look for solutions (ρ, c) to (2) with m = md

and d ≥ 3 of the form

(3) ρ(t, x) =
1

s(t)d
Φ

(

x

s(t)

)

and c(t, x) =
1

s(t)d−2
Ψ

(

x

s(t)

)
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for (t, x) ∈ [0, T ) × R
d with s(t) := [d(T − t)]1/d, the time T being an arbitrary

positive real number. Note that s(t) converges to zero as t increases to the blowup
time T .

Our main result is then the following:

Theorem 1 (Existence of finite mass self-similar blowing-up solutions). There ex-

ists M2 ∈ (Mc,∞) such that, for any M in (Mc,M2], there exists at least a non-

negative self-similar blowing-up solution (ρM , cM) to (2) of the form (3) with a

radially symmetric, compactly supported, and non-increasing profile ΦM satisfying

‖ρM(t)‖1 = ‖ΦM‖1 = M for t ∈ [0, T ) and ‖ρM (t)‖∞ → ∞ as t→ T .

As a consequence of Theorem 1, we realize that non-negative, integrable, and radi-
ally symmetric self-similar blowing-up solutions to (2) with a non-increasing profile
only exist below a threshold mass. Another by-product of our analysis is the exis-
tence of non-negative and non-integrable self-similar blowing-up solutions to (2), see
Proposition 8 below.

2. Blowing-up self-similar profiles

From now on,

d ≥ 3 and m = md =
2(d− 1)

d
,

and we look for a solution (ρ, c) to (2) of the form

(4) ρ(t, x) =
1

s(t)d
Φ

(

x

s(t)

)

and c(t, x) =
1

s(t)d−2
Ψ

(

x

s(t)

)

with s(t) = [d(T − t)]1/d and (t, x) ∈ [0, T ) × R
d for some given T > 0. We further

assume that Φ enjoys the following properties:






Φ ∈ C(Rd) ∩ L1(Rd) is radially symmetric and non-negative,

Φm−1 ∈W 1,∞(Rd) .

Inserting the ansatz (4) in (2) gives that (Φ,Ψ) solves
{

div (∇ [Φm(y)] − Φ(y)∇Ψ(y) − Φ(y) y) = 0 ,

Ψ(y) = (Ed ⋆ Φ)(y) ,

for y ∈ R
d. Since Ψ = Ed ⋆ Φ, the radial symmetry of Φ ensures that of Ψ and,

introducing the profiles (ϕ, ψ) of (Φ,Ψ)

(5) Φ(y) = ϕ(|y|) , Ψ(y) = ψ(|y|) , y ∈ R
d .

By [14, Theorem 9.7, Formula (5)], we have

(6) ψ(r) =
1

(d− 2)rd−2

∫ r

0

ϕ(s) sd−1 ds+
1

d− 2

∫ ∞

r

ϕ(s) s ds

for r ≥ 0. We can also write the equation for ϕ as

(7) ∂r

(

rd−1 ϕ(r) ∂rJ(r)
)

= 0 with J(r) :=
2(d− 1)

d− 2
ϕ(d−2)/d(r) − ψ(r) −

r2

2
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for r ∈ (0,∞). Since we are looking for an integrable profile, we formally conclude
that

(8) ∂rJ(r) = 0 for r ∈ Pϕ := {s ∈ (0,∞) : ϕ(s) > 0} .

In particular, J is constant on any connected component of Pϕ. But, if C is a
connected component of Pϕ, we have either

(9) C = (0, Rs) for some Rs ∈ (0,∞] ,

or
C = (Ri, Rs) for some Ri ∈ (0,∞) and Rs ∈ (0,∞] .

Remark 2. If we additionally assume that the profile ϕ is non-increasing then Pϕ

has only one connected component which is necessarily of the form (9).

Now, take a connected component C of Pϕ. It follows from (8) that there is µ ∈ R

such that

(10) J(r) =
2(d− 1)

d− 2
ϕ(d−2)/d(r) − ψ(r) −

r2

2
= −µ for r ∈ C .

Owing to the assumed integrability of Φ, the function r 7→ rd−1ϕ(r) belongs to
L1(0,∞) and it follows from (6) that the function r 7→ rd−2ψ(r) is bounded in C.
Therefore (10) only complies with the integrability of Φ if Rs <∞ which implies the
boundedness of C. Introducing

Ξ := ϕ(d−2)/d

and taking the Laplacian of both sides of (10) yield that Ξ is a positive solution to

(11) −
d2Ξ

dr2
(r) −

d− 1

r

dΞ

dr
(r) =

d− 2

2(d− 1)

(

Ξ(r)d/(d−2) − d
)

in C ,

with either

(12) ∂rΞ(0) = Ξ(Rs) = 0 if C = (0, Rs)

or

(13) Ξ(Ri) = Ξ(Rs) = 0 if C = (Ri, Rs) .

A final change of scale, namely

η(r) :=
1

λd
Ξ

(

r

µd

)

, λd := d(d−2)/d , µd := d1/d

(

d− 2

2(d− 1)

)1/2

,

leads us to the following boundary-value problem for η: either

(14)















d2η

dr2
(r) +

d− 1

r

dη

dr
(r) + η(r)d/(d−2) − 1 = 0 , r ∈ (0, µdRs) ,

dη

dr
(0) = 0 , η(µdRs) = 0 ,

or

(15)











d2η

dr2
(r) +

d− 1

r

dη

dr
(r) + η(r)d/(d−2) − 1 = 0 , r ∈ (µdRi, µdRs) ,

η(µdRi) = 0 , η(µdRs) = 0 .
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We have thus reduced our study to one or several boundary-value problems (depend-
ing on the number of connected components of Pϕ) for a nonlinear second order
differential equation. The purpose of the next section is then a precise study of this
ordinary differential equation.

However, before going on, let us point out that (11) is not equivalent to (10).
Indeed, since

∂rJ(r) =
2(d− 1)

d− 2
∂rΞ(r) +

1

rd−1

∫ r

0

Ξ(s)d/(d−2) sd−1 ds− r , r ∈ C ,

by (7), the fact that Ξ is a solution to (11) only guarantees that ∂r(r
d−1∂rJ(r)) = 0

for r ∈ C. Consequently, there are constants C1 and C2 such that

∂rJ(r) = −
(d− 2) C1

rd−1
, J(r) =

C1

rd−2
+ C2 , r ∈ C ,

from which (10) follows only if C1 = 0. On the one hand, if C = (Ri, Rs) with
0 < Ri < Rs, it is yet unclear whether the boundary conditions (13) might imply
this property. On the other hand, if C = (0, Rs), the boundary conditions (12) ensure
that ∂rJ(0) = 0 and thus C1 = 0. We shall only deal with this case in the remaining
of this paper and thus focus on the non-increasing profiles ϕ.

3. An auxiliary ordinary differential equation

For a ∈ R, let u(., a) ∈ C1([0, rmax(a))) denote the maximal solution to the Cauchy
problem

(16)











u′′(r, a) +
d− 1

r
u′(r, a) + |u(r, a)|p−1 u(r, a) − 1 = 0 , r ∈ [0, rmax(a)) ,

u(0, a) = a , u′(0, a) = 0 ,

with rmax(a) ∈ (0,∞] and p = d/(d− 2).
Clearly, if a = 1 then u(., 1) ≡ 1 is a stationary solution and rmax(1) = ∞. We first

show that u(., a) is global for all a ∈ R and oscillates around the value 1 if a 6= 1.

Lemma 3. For each a ∈ R \ {1}, rmax(a) = ∞, and the solution u(., a) to (16) is

an oscillatory function in (0,∞). More precisely,

• if a > 1, there is an increasing sequence (ri(a))i≥0 of real numbers such that

r0(a) = 0,






u′(ri(a), a) = 0 , (−1)iu′(r, a) < 0 for r ∈ (ri(a), ri+1(a)) ,

u(r2i(a), a) > u(r2i+2(a), a) > 1 > u(r2i+3(a), a) > u(r2i+1(a), a)

for i ≥ 0,
• if a < 1, there is an increasing sequence (ri(a))i≥1 of real numbers such that

r1(a) = 0






u′(ri(a), a) = 0 , (−1)iu′(r, a) < 0 for r ∈ (ri(a), ri+1(a)) ,

u(r2i(a), a) > u(r2i+2(a), a) > 1 > u(r2i+1(a), a) > u(r2i−1(a), a)

for i ≥ 1.
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These properties are illustrated in Figure 1. Notice that, for a = 7, u(., 7) vanishes
at a finite r and thus provides a solution to (14).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−1

0

1

2

3

4

5

6

7

8

u(.,a)

r

u

Figure 1. Various oscillating behaviours of u(., a) for a ∈ {0.2, 1, 3, 7}.

Proof of Lemma 3. For any r ∈ [0, rmax(a)) consider the functional

(17) E(r, a) :=
|u′(r, a)|2

2
+

|u(r, a)|p+1

p+ 1
− u(r, a) .

By (16), for all r ∈ [0, rmax(a))

(18)
dE

dr
(r, a) = −

d− 1

r
|u′(r, a)|2 ≤ 0 ,

Obviously E(r, a) ≥ −p/(p + 1). Owing to (18), E(r, a) ∈ [−p/(p + 1), E(0, a)] for
r ∈ [0, rmax(a)) which prevents u(., a) of becoming unbounded at a finite value of
r, thereby implying that rmax(a) = ∞. We next argue using Sturm’s oscillations
theorem as in [16, Lemma 9], to establish the oscillatory behaviour of u(., a) for
a 6= 1. �

According to (14), we are interested in finding solutions to the initial value prob-
lem (16) which are positive and vanish at a finite value of r. We thus focus on the
case a > 0 and investigate the positivity properties of u(., a).

Lemma 4. There is a constant ac > 1 such that

• if a ∈ (0, ac), then u(r, a) > 0 for all r ≥ 0,
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• if a = ac, then there is R(ac) > 0 such that










u(R(ac), ac) = 0

u′(R(ac), ac) = 0

u(r, ac) > 0 for r ∈ [0, R(ac)),

• if a ∈ (ac,∞), then there is R(a) > 0 such that










u(R(a), a) = 0

u′(R(a), a) < 0

u(r, a) > 0 for r ∈ [0, R(a)).

These three possibilities are drawn in Figure 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−1

0

1

2

3

4

5

6

7

8

Figure 2. Behaviour of u(., a) for a > ac, a = ac and a < ac.

Proof of Lemma 4. For a > 0, we define

R(a) := inf{R > 0 : u(r, a) > 0 for r ∈ [0, R)} .

Notice that the positivity of a and the continuity of u(., a) guarantee that R(a) > 0.
We consider the sets

P := {a > 0 : R(a) = ∞} ,
N := {a > 0 : R(a) <∞ and u′(R(a), a) < 0} ,
N0 := {a > 0 : R(a) <∞ and u′(R(a), a) = 0} .
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Clearly, P ∪ N ∪ N0 = (0,∞) and 1 ∈ P. Actually, if a ∈ (0, (p + 1)1/p), then
E(0, a) < 0 and the monotonicity (18) of E entails that E(r, a) < 0 for all r ≥ 0.
But, if R(a) < ∞, it readily follows from the definition (17) of the functional E
that E(R(a), a) ≥ 0 whence a contradiction. Therefore, R(a) = ∞ for any a ∈
(0, (p+ 1)1/p) so that

(19)
(

0, (p+ 1)1/p
)

⊂ P .

Consider now a ∈ N0. Then U(x) := u(|x|, a) is a radial positive solution to
the homogeneous Dirichlet-Neumann free boundary problem ∆U + Up − 1 = 0 in
B(0, R(a)) with U = ∂νU = 0 on ∂B(0, R(a)). According to [20, Theorem 3 (iii)],
there is only one value of a for which this solution has a positive radial solution and
it is unique. Consequently, there is a unique ac > 0 such that N0 = {ac}.

Consider next a ∈ N ∪N0 and recall that a > 1 by (19). Following [16, Lemma 11],
let us assume for contradiction that there is ̺ ∈ (0, R(a)) such that u′(̺, a) = 0.
Either ̺ ≤ 1 and we infer from the definition, the monotonicity of E, see (17)-
(18), and the definition of R(a) that 0 > E(̺, a) ≥ E(R(a), a) ≥ 0 which is a
contradiction. Or ρ > 1 and the oscillating behaviour of the solutions implies, using
the notation of Lemma 3, that ̺ ≥ r2(a). This implies that r1(a) < R(a). Then
u(r1(a), a) ∈ (0, 1) and using again (17), (18), and the definition of R(a), we conclude
that 0 > E(r1(a), a) ≥ E(R(a), a) ≥ 0, hence a contradiction. Therefore,

(20) u′(r, a) < 0 for r ∈ (0, R(a)) if a ∈ N ∪N0 .

Let us now prove that P and N are open subsets of (0,∞). We first consider a ∈ N :
by (20) there are ̺ > R(a) and ε > 0 such that u(̺, a) < 0 and u′(r, a) < −2ε for
r ∈ (0, ̺). By continuous dependence, there is δ ∈ (0, a) such that u(̺, b) < 0
and u′(r, b) < −ε for r ∈ (0, ̺) and b ∈ (a − δ, a + δ). Since u(0, b) = b > 0,
we readily deduce that, for each b ∈ (a − δ, a + δ), we have R(b) ∈ (0, ̺) with
u′(R(b), b) < −ε < 0. Consequently, (a− δ, a+ δ) and N is open in (0,∞). Consider
next a ∈ P, a > 1. By Lemma 3 and (17), we have u(r, a) ≥ u(r1(a), a) ∈ (0, 1)
for r ∈ [0, r1(a)] and E(r1(a), a) < 0. By continuous dependence, there is δ > a
such that u(r, b) ≥ u(r1(a), a)/2 > 0 for r ∈ [0, r1(a)], u(r1(a), b) ∈ (0, 1), and
E(r1(a), b) < 0 for b ∈ (a − δ, a + δ). Assume now for contradiction that there is
b ∈ (a − δ, a + δ) such that R(b) < ∞. Owing to (17), (18), and the definition of
R(b), we obtain 0 > E(r1(a), b) > E(R(b), b) ≥ 0 and a contradiction. Consequently,
(a− δ, a+ δ) ⊂ P and P is also open in (0,∞).

We finally argue as in [16, Lemma 15] to show that there is A > 0 such that
(A,∞) ⊂ N .

Since P and N are open subsets of (0,∞), N0 = {ac}, (0, (p + 1)1/p) ⊂ P, and
(A,∞) ⊂ N , we readily conclude that P = (0, ac) and N = (ac,∞). �

We next study the properties of the map a 7→ R(a). An efficient tool for that
purpose is the variation of u(., a) with respect to a defined by

ϑ(r, a) :=
∂u

∂a
(r, a) , (r, a) ∈ [0,∞) × (0,∞),
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which solves the second order linear differential equation

(21)
ϑ′′(r, a) +

d− 1

r
ϑ′(r, a) + p u(r, a)p−1 ϑ(r, a) = 0 , r ∈ [0,∞) ,

ϑ(0, a) = 1 , ϑ′(0, a) = 0 ,

We argue as in [7, 25] to prove the following lemma.

Lemma 5. If a > ac, there is a unique z(a) ∈ (0, R(a)) such that















ϑ(r, a) > 0 for r ∈ [0, z(a)) ,

ϑ(z(a), a) = 0

ϑ(r, a) < 0 for r ∈ (z(a), R(a)] .

In addition, u(z(a), a) > 1 and the ratio ϑ(., a)/u(., a) is a decreasing function of r
on (0, R(a)).

Proof of Lemma 5. Since the proof follows rather closely that of [25] and [7, Lemma 2.1],
we sketch it briefly for the sake of completeness. Fix a > ac and set u = u(., a) and
ϑ = ϑ(., a) to simplify notations. We first argue as in [16, Lemma 17] to show that ϑ
vanishes at least once in the interval (0, z1(a)), where z1(a) denotes the unique zero
in (0, R(a)) of u− 1. Indeed, (16) also reads

(u(r) − 1)′′ +
d− 1

r
(u(r) − 1)′ +

u(r)p − 1

u(r) − 1
(u(r) − 1) = 0 , r ∈ [0,∞)

and (u(r)p−1)/(u(r)−1) ≤ p u(r)p−1 for r ∈ [0, z1(a)). It then follows from Sturm’s
comparison theorem that ϑ vanishes at least once in the interval (0, z1(a)). Let
z ∈ (0, z1(a)) denote the first zero of ϑ.

We now aim at showing that ϑ cannot vanish once more in the interval (z, R(a)).
To this end, we define

ξ(r) := rd−1 [u′(r) ϑ(r) − u(r) ϑ′(r)] = −rd−1 u(r)2

(

ϑ

u

)′

(r) , r ∈ [0, R(a)) ,

which encodes the monotonicity of ϑ/u. It follows from (16) and (21) that

(22) ξ′(r) = rd−1 ((p− 1) up(r) + 1) ϑ(r) , r ∈ [0, R(a)) .

Clearly, ξ′(r) > 0 for r ∈ (0, z) and ξ(0) = 0, so that ξ(r) > 0 for r ∈ (0, z]. Assume
now for contradiction that there is ̺ ∈ (z, R(a)) such that

ξ(r) > 0 for r ∈ (0, ̺) and ξ(̺) = 0 .

Observing that ϑ′(z) < 0, we realize that, if ϑ(̺) ≥ 0, there is σ ∈ (z, ̺] such
that ϑ(r) < 0 for r ∈ (z, σ) and ϑ(σ) = 0. In that case, ϑ′(σ) ≥ 0 and thus
ξ(σ) = −σd−1 u(σ) ϑ′(σ) ≤ 0, leading us to a contradiction. Consequently,

(23) ϑ(̺) < 0 .



10 A. BLANCHET AND PH. LAURENÇOT

We next introduce the functions

T (r) :=
2 (u(r)p − 1)

(p− 1) u(r)p + 1
ξ(r) − ζ(r) ,

ζ(r) := rd [u′(r) ϑ′(r) + (u(r)p − 1) ϑ(r)] + (d− 2) rd−1 u′(r) ϑ(r) ,

for r ∈ [0, R(a)) and use (16), (21), and (22) to obtain

ζ ′(r) = 2 rd−1 (u(r)p − 1) ϑ(r) ,

T ′(r) = 2p2 u(r)p−1

[(p− 1) u(r)p + 1]2
u′(r) ξ(r) ,(24)

for r ∈ [0, R(a)). Integrating (24) over (0, ̺) and using the negativity of u′ and the
positivity of ξ on this interval give

(25) ζ(̺) = −T (̺) > 0 .

Since ξ(̺) = 0, we have u(̺) ϑ′(̺) = u′(̺) ϑ(̺) and we have

ζ(̺) = Q(̺)
ϑ(̺)

u(̺)
,

where

Q(r) := rd
[

u′(r)2 + u(r)p+1 − u(r)
]

+ (d− 2) rd−1 u(r) u′(r) , r ∈ [0, R(a)) .

It then follows from (23), (25), and the positivity of u that

(26) Q(̺) < 0 .

Finally, define

P (r) := rd

(

u′(r)2 + 2
u(r)p+1

p+ 1
− 2 u(r)

)

+ (d− 2) rd−1 u(r) u′(r)

for r ∈ [0, R(a)). On the one hand, we notice that

(27) P (r) = Q(r) − u(r) −
p− 1

p+ 1
u(r)p+1 < Q(r) , r ∈ [0, R(a)) .

On the other hand, we deduce from (16) and (18) that

P ′(r) = rd−1 u(r)

(

d− 2

d− 1
u(r)p − (d+ 2)

)

, r ∈ [0, R(a)) .

At this point, we realize that we have necessarily a > (d+2)(d− 1)/(d− 2) and that
there is s ∈ (0, R(a)) such that P ′(r) > 0 if r ∈ (0, s) and P ′(r) < 0 if r ∈ (s, R(a)).
Since P (0) = 0 and P (R(a)) > 0, we conclude that P (̺) > 0 and then Q(̺) > 0
by (27). But this contradicts (26). We have thus established that ξ is positive in
(0, R(a)) from which Lemma 5 follows. �

We are now in a position to state and prove some properties of the map a 7→ R(a).

Proposition 6. The map a 7→ R(a) is a decreasing function on (ac,∞) and there is

z1 > 0 such that

(28) lim
aցac

R(a) = R(ac) and lim
a→∞

a(p−1)/2 R(a) = z1 .



FINITE MASS SELF-SIMILAR BLOWING-UP SOLUTIONS 11

The monotonicity of a 7→ R(a) is shown in Figure 3. According to numerical
simulations, the function a 7→ a(p−1)/2 R(a) also seems to be a decreasing function of
a ∈ [ac,∞), see Figure 3.
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Figure 3. Monotonicity of the radius R and a 7→ a(p−1)/2 R(a) (d = 3).

Proof of Proposition 6. By Lemma 4, u′(R(a), a) < 0 for all a ∈ (ac,∞) and the
implicit function theorem warrants that R ∈ C1((ac,∞)) with

dR

da
(a) = −

ϑ(R(a), a)

u′(R(a), a)
.

Since ϑ(R(a), a) < 0 by Lemma 5, the previous formula implies the strict monotonic-
ity of a 7→ R(a). We next define

Rl := sup
a∈(ac,∞)

R(a) ∈ (0,∞] .

If Rl > R(ac), there is ̺ ∈ (R(ac), Rl) such that u(̺, ac) > 0 by Lemmata 3 and 4.
Then, there is δ > 0 such that R(a) > ̺ for a ∈ (ac, ac + δ). It then follows from the
continuous dependence of u(., a) with respect to a and the monotonicity of u(., a)
with respect to r that

0 = u(R(ac), ac) = lim
aցac

u(R(ac), a) ≥ lim
aցac

u(̺, a) = u(̺, ac) > 0 ,

and a contradiction. Therefore, Rl ≤ R(ac) is finite and we have

u(Rl, ac) = lim
aցac

u(R(a), a) = 0 ,

from which we conclude that Rl = R(ac).
Finally, define

(29) v(r, a) :=
1

a
u

( r

a(p−1)/2
, a

)

, (r, a) ∈ [0,∞) × (0,∞) .
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Owing to (16), v(., a) solves










v′′(r, a) +
d− 1

r
v′(r, a) + |v(r, a)|p−1 v(r, a) − a−p = 0 , r ∈ [0,∞) ,

v(0, a) = 1 , v′(0, a) = 0 ,

In addition,

(30) v(r, a) > 0 for r ∈
(

0, a(p−1)/2 R(a)
)

for a > ac by Lemma 4. Since a−p −→ 0 as a→ ∞, we have

(31) lim
a→∞

sup
r∈[0,̺]

|v(r, a) − w(r)| = 0 for all ̺ > 0 ,

where w denotes the unique solution to

(32)











w′′(r) +
d− 1

r
w′(r) + |w(r)|p−1 w(r) = 0 , r ∈ [0,∞) ,

w(0) = 1 , w′(0) = 0 .

By [8], there is z1 > 0 such that

(33) w(r) > 0 and w′(r) < 0 for r ∈ [0, z1) , w(z1) = 0 , w′(z1) < 0 .

Owing to (33), there is δ > 0 such that w(r) < 0 for r ∈ (z1, z1 + δ). It then follows
from (31) that, given r ∈ (z1, z1 + δ), v(r, a) < 0 for a large enough (depending on
r), whence a(p−1)/2 R(a) ≤ r for a large enough by (30). Letting r → z1 guarantees
that

lim sup
a→∞

a(p−1)/2 R(a) ≤ z1 .

Next, if ̺ ∈ (0, γ), we have w(r) > w(̺) > 0 for r ∈ [0, ̺] and we infer from
(31) that v(r, a) > w(̺)/2 > 0 for r ∈ [0, ̺] and a large enough. Consequently,
̺ < a(p−1)/2 R(a) for a large enough, from which we conclude that

lim inf
a→∞

a(p−1)/2 R(a) ≥ z1 .

Combining the above two inequalities completes the proof of Proposition 6. �

The above information allow us to estimate from above and from below a specific
integral of u(., a).

Proposition 7. For a ∈ [ac,∞), we define

M(a) := d |B(0, 1)|

∫ R(a)

0

u(r, a)p rd−1 dr .

Recalling that w is the solution to (32) and z1 is its first positive zero, we have

lim
a→∞

M(a) = Mc := d |B(0, 1)|

∫ z1

0

w(r)p rd−1 dr ,(34)

M2 := sup
a∈[ac,∞)

M(a) < ∞ .(35)
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Proof of Proposition 7. Let a ≥ ac. Since u(0, a) = a, it follows from the monotonic-
ity of u(., a) that

M(a) ≤ d |B(0, 1)|

∫ R(a)

0

ap rd−1 dr = |B(0, 1)|
(

a(p−1)/2 R(a)
)d
.

The upper bound (35) is then a straightforward consequence of (28) and the above
inequality.

Next, recalling that v(., a) is defined by (29), we have

M(a) = d |B(0, 1)|

∫ a(p−1)/2R(a)

0

v(r, a)p rd−1 dr ,

and we infer from (28) and (31) that (34) holds true. �

4. Proof of Theorem 1

Thanks to the analysis done in the previous sections, we are now in a position to
construct self-similar blowing-up solutions to (2) having either finite or infinite mass.

Proposition 8. Given a > 0 and T > 0, define

ϕ(r) := λ
d/(d−2)
d u(µdr, a)

d/(d−2) for r ∈ [0,∞) if a ∈ (0, ac) ,

and

ϕ(r) :=







λ
d/(d−2)
d u(µdr, a)

d/(d−2) for r ∈ [0, R(a)/µd]

0 for r ≥ R(a)/µd ,

if a ∈ [ac,∞) .

Define next ψ, Φ, and Ψ by (6) and (5), respectively. Then the functions (ρ, c)
defined by (4) in (0, T ) × R

d with s(t) = [d(T − t)]1/d is a non-negative self-similar

blowing-up solution to (2) with finite mass if a ≥ ac and infinite mass if a ∈ (0, ac).

The proof of Proposition 8 readily follows from the analysis performed in Sections 2
and 3. As for Theorem 1, it is a straightforward consequence of Proposition 8, the
threshold values Mc and M2 being given by

Mc := d1/d

(

2(d− 1)

d− 2

)(d−1)/2

Mc and M2 := d1/d

(

2(d− 1)

d− 2

)(d−1)/2

M2 .

5. Discussion

We have proved the existence of non-negative, integrable, and radially symmetric
self-similar blowing-up solutions for (2). The profile ϕ of these self-similar solutions
is compactly supported and non-increasing, and the mass of the corresponding self-
similar solution ranges in the bounded interval (Mc,M2], the threshold mass Mc

corresponding to the onset of blowup found in [2]. Our analysis thus reveals the
existence of a second threshold value M2 > Mc of the mass above which no radially
symmetric and non-increasing self-similar blowing-up solution exist. The meaning
of this second threshold value for the mass is yet unclear. It is worth mentioning at
this point that a related situation was uncovered for the critical unstable thin-film
equation

∂tu = −∂x

(

un ∂3
xu+ un+2 ∂xu

)

, (t, x) ∈ [0,∞) × R ,
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in [21] for n ∈ (0, 3/2). It is likely that, given M ∈ (Mc,M2], there is only a unique
radially symmetric and non-increasing self-similar blowing-up solution with mass M
and Figure 4 provides some numerical evidence of this fact. Besides this uniqueness
question, the question of stability of these blowing-up solutions is also of interest.

4 6 8 10 12 14 16 18 20 22 24 26
25.2

25.4

25.6

25.8

26.0

26.2

26.4

26.6

Mass

a

M

Figure 4. Monotonicity of the mass a 7→ M(a).

Another challenging question is the existence (or non-existence) of integrable pro-
files ϕ with a non-connected positivity set as discussed in Section 2. Figure 5 provides
numerical evidence that, if a > ac is large enough, u(., a) may have several zeroes and
each positive “hump” actually corresponds to a solution of (15) for suitable values of
Ri and Rs. Whether the additional constraint (10) may be satisfied does not seem
to be clear.
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model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations
35 (2009), 133–168.

[3] A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: op-

timal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations
44 (2006), 32 pp. (electronic).

[4] P.-H. Chavanis and C. Sire, Anomalous diffusion and collapse of self-gravitating Langevin

particles in D dimensions, Phys. Rev. E 69 (2004), 016116.
[5] P.-H. Chavanis and C. Sire, Virial theorem and dynamical evolution of self-gravitating

Brownian particles in an unbounded domain. I. Overdamped models, Phys. Rev. E 73 (2006),
066103.

[6] J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel

model in R
2, C. R. Math. Acad. Sci. Paris 339 (2004), 611–616.

[7] P.L. Felmer, A. Quaas, M. Tang, and J. Yu, Monotonicity properties for ground states

of the scalar field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 105–119.
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de Brienne, F–31000 Toulouse, France

E-mail address : Adrien.Blanchet@univ-tlse1.fr
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