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ON AN EXPONENTIAL ATTRACTOR FOR A CLASS OF PDES
WITH DEGENERATE DIFFUSION AND CHEMOTAXIS
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Ingolstadter Landstr. 1, 85764 Neuherberg, Germany

ANNA ZHIGUN*

Felix-Klein-Zentrum fiir Mathematik, Technische Universitat Kaiserslautern
Paul-Ehrlich-Str. 31, 67663 Kaiserslautern, Germany

(Communicated by Shouchuan Hu)

ABSTRACT. In this article we deal with a class of strongly coupled parabolic
systems that encompasses two different effects: degenerate diffusion and chemo-
taxis. Such classes of equations arise in the mesoscale level modeling of biomass
spreading mechanisms via chemotaxis. We show the existence of an exponen-
tial attractor and, hence, of a finite-dimensional global attractor under certain
’balance conditions’ on the order of the degeneracy and the growth of the
chemotactic function.

1. Introduction. In this work we continue our studies of the longtime behaviour
of a degenerate system modelling a biomass spreading in the presence of chemotaxis
which was introduced in [15]:

M =V - (M*VM — M "Vp) — f(M,p) inRT xQ, (1a)
Op = Ap —g(M, p) in RT x €, (1b)
M=0, p=1 in RT x 09, (1c)
M =My, p=po in {0} x Q, (1d)

where Q is smooth bounded domain in RY, N € {1,2,3}, a and  are two positive
constants satisfying certain conditions (we call them ’balance conditions’) to be
specified below, and My € L= (), pg € W°(Q) are nonnegative functions.
Equations (1a)-(1b) can model, e.g., the spreading of a bacterial population under
the influence of chemotaxis. Chemotaxis systems have been much studied in the
recent decades. We refer the interested reader to surveys [3,22] which cover both
modelling and analytical aspects. The available results mostly focus on the uniform
boundedness/blow-up for finite/infinite times and convergence of solutions to an
equilibrium. It is usually assumed that o = 0, v = 1, and very specific nonlinearities
f and g are chosen. For example, in the case of the classic Keller-Segel model [22]
one has f = 0, i.e., the absence of proliferation which is not realistic in general.
Furthermore, the condition a = 0 corresponds to the standard non-degenerate
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diffusion. It is has a well known property of the infinite speed of propagation which
entails that the population fills the domain instantaneously. Particularly in the case
of a bacterial biofilm this falls short to model the experimentally and numerically
observed [6] moving fronts. Thus, it was proposed in [15] to consider rather general
nonlinearities f and g, thus allowing to model reaction/interaction, and to take
«a > 0. The latter corresponds to the case of a degenerate diffusion (that is, the
diffusion coefficient has at least one zero point) of the porous medium type. It is
well known (see, e.g., [27]) that such diffusion leads to solutions with a finite speed
of propagation.

From the analytical point of view, system (1) is a blend of a porous medium
equation with a chemotaxis growth system. The dynamics of a single equation with
a porous medium degeneracy has been thoroughly studied in [9, Chapter 4] with
the help of exponential attractors (see Definition 1.1 below). For non-degenerate
chemotaxis growth systems under the homogeneous Neumann boundary conditions
the existence of attractors and their dimension were studied in [1,10-12,16,25,26],
see also [9, Section 3.6]. For system (1) the well-posedness and the existence of the
global attractor were established in [15, 18] and [19-21], respectively, (see also [9,
Chapters 9-10] and [28]). The question of finiteness of the attractor dimension has
not as yet been studied. We address this issue in the present paper. The answer
turns out to be positive under suitable conditions on the problem coefficients. Thus,
to the best of our knowledge, system (1) is the second after the porous medium
equation class of highly degenerate problems which can exhibit finite-dimensional
dynamics.

It is well known that the concept of global attractor has some essential drawbacks.
It is in general not stable under perturbations, the speed of convergence to it may
be arbitrary slow, and it is usually hard to express it in terms of the parameters of
the system. Thus it is often difficult to observe the global attractor in numerical
simulations. The notion of exponential attractor (compare Definition 1.1 below) was
first introduced in [7] as an alternative way to capture the dynamics of a dynamical
system. It is a finite dimensional positively invariant attracting set that attracts
bounded subsets of the phase space with exponential speed. If such a set exists for
a dynamical system, it necessarily contains the global attractor of the system, and
that global attractor has finite dimension (so it is also a way to show that the global
attractor is finite-dimensional). While generally stable and easier to handle, this
(eventually bigger) attracting set has it’s own faulty: it is not uniquely determined
(while the global attractor is).

Unlike the nondegenerate dissipative equations and systems on bounded domains
which, as a rule, possess finite-dimensional global and exponential attractors, the
dynamics of degenerate problems is much more delicate. The porous medium and
p-Laplace equations are two very first examples of autonomous equations which -
under rather general conditions- have infinite dimensional attractors, see [13,14,17],
also [9, Chapters 4-7]. Moreover, the asymptotics of their Kolmogorov e-entropy
turned out to be polynomial. Even the attractors of nondegenerate problems in
unbounded domains, which are known to be of infinite dimension, always showed
only logarithmic asymptotics of the entropy, see, e.g., [8].

Previous results on the well-posedness and the existence of the global attractor
were obtained for (1) under the balance conditions

S+1<y<a 2)
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and the following assumptions on the nonlinearities f and g:

|F(M, p)| < Fy(1+|M|¢)? for all M,p >0 for some & € [0,a — v +2), Fy € RY,

(3)
f(M,p) > FoM — F3  forall M,p>0 for some F, € RT, F3 € R{, (4)
g(M,p) = Gip+ g2(p)M, |g2(p)| < Gy for all M,p >0 for some G1,Go € R,

0

(5)
F(M,p) = FxM + f (M2, p)  forall M,p>0 for some Fj € R, (6)
fEWLX(R?), go € Wip(R), f(0,p) =0 forallpeR, g5(0) <0. (7)

In this setting, we established in [21] the existence of the weak global attractor in
the phase space L>(Q2) x W1>°(Q). Note that in [9, Section 4.4] it was shown that
the dimension of the global attractor for the porous medium equation (thus, even
without chemotaxis)

DM =V - (MOVAM) — f(M) ®)
may be infinite if —f/(0) > 0. Observe that this includes the case of the standard

logistic growth, i.e., when

~1on = (1- ) )

for some growth rate r > 0 and carrying capacity K > 0. Conditions (2)-(7)
therefore cannot guarantee the finite dimension of the global attractor (and hence
also the existence of an exponential attractor) for (1) as the following example
illustrates.

Example 1. Let

Observe that this choice of f and g is in line with conditions (2)-(7). Let us assume
further that

po;l.

In this special case equation (1b) together with the corresponding boundary con-
dition can be easily solved explicitly, the solution being p = 1. Hence, the taxis
flux in (1a) completely vanishes on Q. As a result, M solves the porous medium
equation (8) with —f’(0) = 1 > 0 thus leading to the infinite dimensional global
attractor already for M-component.

We improve conditions (2)-(7) in the following way: we consider now sharper
balance conditions than (2), namely

1+ % <7<a (10)
and replace (6) by
F(M,p) = FsM + F (MP,p), for some 8 > 1+%, Fy > 0. (11)

The following choice of functions f and g satisfies conditions (3)-(5), (7) and (11):
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Example 2.
MB
f(M, 10) = 7M + Warctanp,
p
M,p)=p+M——.
9(M,p)=p P

We recall a definition of the exponential attractor:

Definition 1.1 ( [9, Chapter 3, Definition 3.1]). A set M is an exponential attractor
for a semigroup S(t) in a Banach space X if: it
(i) is compact in X;
(ii) is positively invariant, i.e., S(t)M C M, Vt > 0;
(iii) attracts bounded sets of initial data exponentially fast in the following sense:
there exists a monotonic function @ and a constant Cyqte > 0 (called below
attraction parameters) such that

VB C X bounded, distx(S(t)B, M) < Q(|B|lx)e rtt, t > 0;
(iv) has finite fractal dimension.

Here distx (-, -) denotes the nonsymmetric Hausdorff distance between subsets of
X:

distx (A, B) := sup inf ||z — y||x for all A, B C X.
TeAYEB

Our main result deals with the existence of exponential attractors for system (1).
It reads:

Theorem 1.2 (Exponential attractor for (1)). Let  be a smooth bounded domain
in RV, N € {1,2,3}. Let the functions f and g satisfy the assumptions (3)-(5),
(7) and (11) and let the given constants v and v satisfy 1+ § <y < a. Then the
initial boundary value problem (1) generates a well defined semigroup S(t), t > 0,
in the (positive cone of the) space L*°(2) x W1°(Q). The semigroup S(t) possess
an exponential attractor M (in terms of Definition 1.1) which is a bounded subset
of C%(Q) x C?T9(Q) for some Hélder exponent 0 € (0,1). The number 6 and such
parameters of the attractor as: its diameter, fractional dimension, the attraction
parameters Crqte and Q can be chosen such as to depend only upon the parameters
of the problem.

As a direct corollary of Theorem 1.2 we have that

Corollary 1 (Finite-dimensional global attractor for (1)). Under assumptions of
Theorem 1.2 the semigroup generated by system (1) possesses the finite-dimensional
global attractor A C M. In particular, upper bounds for the attractor diameter and
fractal dimension can be chosen to depend upon the parameters of the problem alone.

There are different constructions [9] of exponential attractors. We use the one
based on the so-called smoothing property (see [9] and references therein). One of
its simplest abstract versions insures the existence of an exponential attractor for a
discrete semigroup S™, n € Ny, and takes (see, e.g., [9, Chapter 3]) the form

[1S(u1) — S(u2)|lm, < K||luy — uz|lg for all uy,us € C. (12)

Here H and H; are two Banach spaces such that H; is compactly embedded in H,
S maps between H and Hj, C is a subset of some metric space X and is invariant
under S, and the constant K > 0 is independent of a particular choice of u; and
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ug. It is in general not difficult to establish such a property for the semigroup
corresponding to a dissipative nondegenerate problem. Moreover, in these cases the
ways to choose spaces H and H; in an appropriate way are usually in abundance.
Very often they are two Holder spaces or, alternatively, a Lebesgue and a Sobolev
space, defined for the whole spatial domain. However, a condition like (12) is in
general unattainable for a semigroup of solution operators for a degenerate equation,
such as e.g. the porous medium equation. In [9,17] the smoothing property could
be generalised to a form that allows to treat the latter case. It turned out that
the underlying spaces, such as H and H;, cannot be chosen once and for all, but
that they need to be changed as one passes from a neighbourhood of one point
ug in C to another. Thereby, it is necessary to work on functional spaces set up
not on the whole spatial domain, but, rather, on some sub- and superlevel sets
of ug. This requires localising techniques. In the present work we use the ideas
which were originally developed in [9,17] for the porous medium equation in order
to obtain an exponential attractor for system (1). The presence of a chemotaxis
transport term in addition to a degenerate diffusion is a considerable complication.
It further reduces the class of norms in which one can estimate the differences of
two solutions. For example, while the solution operators of the porous medium
equation are Lipschitz continuous both in L' (this was essentially used in [9,17])
and H~', in our case they are Lipschitz only in H~!. Working in negative Sobolev
spaces is more difficult since they are much less suited for the localising techniques.

The rest of the paper is organised as follows. In Section 2 we fix some notation
and then establish some results concerning the regularity and stability of solutions,
as well as some properties of an exponentially absorbing set for system (1). In
Section 3 we formulate and prove a smoothing property (Theorem 3.1 below) for
the corresponding semigroup. The proof of Theorem 1.2 is given in Section 4.

2. Preliminaries. In this Section we collect some necessary preliminary observa-
tions and results.

Basic notation and functional spaces. We denote R* := (0, 00), R} := [0, 00).

Partial derivatives in the classical or distributional sense with respect to a variable
z are denoted by 0,. Further, V and A stand for the spatial gradient and Laplace
operators, respectively.

We assume the reader to be familiar with the standard LP, Sobolev, and Holder
spaces and their usual properties, as well as with the more general L? spaces of
functions with values in general Banach spaces, and with anisotropic spaces, such
as, for any open O C RY and 0 < ¢; < t, the parabolic spaces

H'((t1,t), Hy(0), H1(0)) = {u € L*((t1,1), Hy (0))| dpu € L*((t1,t), H1(0))}
equipped with the norm

Nl=

Nl e (21,00, 112 0y, -1 (0)) = (Hu||iz((t1,t),Hg(O)) + ||3tu||2L2((t1,t),H—l(O)))
and

WE22((4,4) x O) == {u € L*((t1,t), H*(0))| dpu € L*((t1,t), L*(0))}
equipped with the norm

1
2
||u||W(1»2)=2((t1.,t)><O) = (HuH%Q‘((tl,t),H?(O)) + ||8tu||%2((t1,t),L2(0))) )
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As usual, Ci“(ﬁ), k € Ny, denotes the space of k times continuously differentiable
functions u : Q@ — R, and D = D* ... D%, «; € Ny, is the corresponding higher
order partial derivative of order |o| = va_l a;. A norm on C*(Q) is given by

[ull gy = Z maX|D u(z)|.
al<k ®
We recall that a Holder coeflicient for a Holder exponent 6 € (0,1) and a real-valued
function w defined in a set A C R¥, k € N, is given by
w(x) —w(y
|wlcecay = sup [wiw) = w(y)| ) 9( )|
wyed, aty [T =Yl

This allows to introduce the standard Holder spaces for k € Ny:
RO (Q) = {u € C*(@) : [Du| o gy < oo for all |a] = k}
equipped with the norm

lallgrroay = lulergy + D 1D%ulco -
|| =k

Recall also that due to the Sobolev interpolation inequality for any 6 € (0,1)
there exist numbers 61,6, € (0,1) and C; > 0 such that following interpolation
inequalities hold:

[wl[ Lo (o) < C‘lllwllmQ [wf -1 forallwe C*(Q), (13)
[Vl @) < Callvll 2 Q)||v|| for all v € C?*9(Q). (14)

Finally, we make the following two useful conventions. Firstly, for all indices
i, C; denotes a positive constant or, alternatively, a positive continuous function.
Secondly, the statement that a constant depends on the parameters of the problem
means that it depends upon such parameters as: space dimension NN, domain (2,
constants «, 3, v, F;, G;, and norms of f and go. This dependence is subsequently
not indicated in an explicit way.

Sub- and superlevel sets. In what follows we sometimes consider parts of solu-
tions of problem (1) restricted to the sublevel sets {My > 6} for § € (0, || Mol| 1= (q))-
Observe that if My € C?(€2), then, in fact, for all 0 < § < %HMOHLOQ(Q)

dg ({Mo < 8}, {Mo > 20}) > 67| Mo| 7 (15)

co Q)
where dr denotes the standard metric distance between sets in R:

dr(X,Y) := inf —yl.
R(CY) = | int oy

Thus, we have a control over a lower bound for the distance between sub- and
superlevel sets, and that bound depends only upon the quantities which appear on
the right-hand side of (15). An important consequence of this observation is the
existence for all 0 < 8y < 01 < £||Mo| = (q) of a smooth cut-off function ¢ which
satisfies the following:

¢ € C5° (), (16a)
Y < [O 1] inﬁ p=0in {M0<50}, p=1in {M0>51}, (lﬁb)
|D¥p(2)] < Cop' “(z) for all z € Q for all w € (0,1) and k € N, (16¢)
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Cz = G (1Mol oy 00,61, 0,0, k) (16d)

A family of functions with such properties exists for all My € C? (€2) due to property
(15), see Proposition 1.1 of [9].

Regularity of solutions. From now on we assume that assumptions of Theo-
rem 1.2 are fulfilled. A solution to (1) can be defined as follows:

Definition 2.1 (Weak solution). Let (Mg, pg) € L®°(Q) x W>°(£2). We call a pair
of functions M, p: R x @ — R{ a global weak solution of (1) if for all 0 < T' < oo
it holds that
(i) M € L> ((0,T) x Q), M+t € L2 ((0,T); Hj (), ;M € L? ((0,T); H1(Q));
(ii) p € L=((0,T); WH>(Q)), dep € L* ((0,T); H~H(Q ))
(iii) (M, p) satisfies equations (1a 1b) in L2 ((0,7); H-1());
(iv) (M, p)(0) = (Mo, po) in H~ (Q) x L*(Q).
It was proved in [15,18] (see also [28, Section 3.2]) that for all (My, po) € L>(£2) x
W1°2(Q) the initial boundary value problem (1) possess a unique solution with reg-
ularity as stated in Definition 2.1 and, moreover, this solution is uniformly bounded
in L°°(Q) x Wh°(Q). In general, a solution of a degenerate equation like (1a) is
only weak and not classical [27]. Still, it is well-understood [2,4,5,23,29] that un-
der reasonable conditions on the equation coefficients bounded weak solutions are
Holder continuous. In our case the following regularity result holds:

Lemma 2.2 (Regularity and positivity). Let (Mg, po) € L>®(2) x W1>°(Q) with
(Mo, po)|| £ () x Wi () < R for some R > 0 and let (M, p) : [0, T]xQ = RJ xR
be the corresponding weak solution to (1). Then:
1. (Hélder regularity) There exists a number 6 = O(R) € (0,1) such that (M, p)
belongs to CT0(RT x Q) x C1H2:2H0(RY x Q), and for all 0 < 7 < T it holds
that

||(M7 p)||Cg’9([T,T]Xﬁ)XC1+%’2+9([T,T]Xﬁ) S 03 (7—7 T7 R) : (17)

2. (Preservation of positivity) RT x {My > 0} € {M > 0}, and for all § €
(0, | Mol (o)) and T > 0 it holds that

inf {M(s,x)| t €[0,T], z € {My > }} > Cy4(4, T, R). (18)

3. (Regularity on sublevel sets) M € C'? (R+ x {My > 6}), and for all § €
(0, | Mol Le=()) and 0 < 7 < T it holds that

||MHC1’2([T,T]XW) S C5 (5, T, T, R) . (19)

Proof. 1. Observe that equation (1a) can be written in the following form:
M =V - A(t,z, M,V M)+ b(t, x),
where we introduced
A(t,x, M,p) := M“p—M"Vp(t,x),
b(t,z) = f(M,p)(t,x).
Clearly, functions A and b satisfy the following conditions:
|A(t,z, M, p)| < M*|p| + HM’YVPH(Lw(]RerQ))" J (20)
[b(t, )| < [[f (M, p)l| Lo~ m+ x0)- (21)
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Moreover, with the help of the Holder inequality we deduce that
A(t,z, M, p) - p =M"|p|* + M"Vp(t,z) - p
=M®|p[> + MZp- MY~ 2Vp(t, )
>M[p|* — M%|p| - MYTE|Vp(t, )

1
Z*Ma|p|2 5 HMV_inH Loo(R+ xQ))n (22)

Due to (20)-(22), a > 0, v > &, and the fact that (M, p) is uniformly bounded in
L= (Q) x W (Q) by a constant which depends only upon the parameters of the
problem and R, we can apply Theorems 2.1 and 3.I from [23] on inner and boundary
regularity for degenerate parabolic PDEs. These results imply the existence of a
number 6 = 6 (R) € (0,1) such that M € C2:9([7,T] x Q) for all 0 < 7 < T, and
1M1 o500 gy < Co (BT R). (23)
Consequently, equation (1b) together with the boundary condition p = 1 can be
seen as a linear parabolic equation for p with Holder continuous coefficients. Thus,
standard Schauder estimates entail that p is a classical solution to (1b) and satisfies

1Pl 0 gy, < Cr (TS R). (24

Combining (23)-(24), we obtain (17).

2. We start by proving the quantitative estimate (18). For this purpose we make
use of the classical idea of propagation of LP bounds. Since we aim at an estimate
from below, we estimate M ~! from above. Of course, this can only be done in
those areas where the M-component is strictly bounded from below by a positive
constant. For that reason we use a cutoff function from (16) in order to eliminate
the part of Q where My is small. More precisely, let us multiply equation (1a) by
—ap¢ M~ for a > 2a and s as in (16) while we choose &y := §, &1 := 24, so
that, in particular, ¢s = 0 in {|Mp| < §}. Integrating (formally) over 2 and using
integration by parts where necessary we obtain that

o HSO;M_GHU(Q)
(a+1a
47

(a—a)?
a—2

a -1 a=2
~20 (I VMTE (e )T M )

2
o5 var=|
(L2()"

+2a (%fVM—%, (psM 1Y% MV_l_%Vp>
a

- (L2

_1\a— _ _ M p)
—a® ((ps M) M2, Vs -V +a( N “,f(’> (25
((psnr™) #5- Vp) Loy TP 7 G

Using the Young and Holder inequalities, the assumptions on «, v, and f, and the
properties of @5 we estimate the right-hand side of (25) on [0, 7] as follows:

i |05 wHLl(Q)
2

a—a

<-C3 H%%

(L2~

5 —aco M S
+Co(0,T, R)a H%Q VM~ H(L2 @) |05 M HL21(Q)
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+C10(5,T, R)a H%%VM*%
+ C11(6, T, R)a® || g M~
< — C13(6,T, R) H%%VM—% ’

< — %013(5, T,R) HV ((p(;%M

+C13(0, T, R
+ Cua(8,T, Rya? ([ esn

<—-Ci5(6,T,R) HV (goé M

| (oo

a

1
%M’“Hium

‘(Lz(Q))”

+C1a(8, T, R)a |0 M~ 1

+ C14(6, T, R)a (”%M_aHLl(m + 1)

a—1
[P

(L2 ()~

=)l
(L2(@)n

1)%*

a—2

Lty H2
2
Pl 2@

wHLl(Q) + 1)

a—2
[P

=),

5. T 2 apf—a
(L2(Q))n +Cl6(’ 7R)a H%

+ C14(6,T, R)a (Hg@ _(LHLl @ T 1)

< —C15(5, T, R) HV (%?M =

+ C17(8, T, R)a (Hga(;
The first consequence of (26)

sup. ||

te[0,T] )HLI

This shows the a priori boundedness of Hga(;M ’1|

Yl + 1)

)H(L2(Q))"

is due to the Gronwall lemma:
TC17(5,T,R a? a —a
(@ + 157D (H%MO Iz @) “)

SeTC’n(&T,R)a2 (67(1 + 1)

:chg(a, 5, T’7 R) (27)

Lo(@) for all a € [2a,00). To get

an estimate for H<p5M -1 || Loo(Q) observe that due to the interpolation inequality for
Lebesgue spaces
& _a—a _a 2
T P [ 2 ] W
<||pYe S|
- || ||L3“ ({Mo>6}) HSO(S L3(Q)
a—a 2

<||s M (P47

= HWg L3 (Q) o5 M L3(Q)

<ce (30, 2,7, R H Sy (28)

o, = .
=18 727 9 QO(S L3(Q)

Combining (26) with (28
inequality

[|ul|30) < Chol|ul|

for u := @?M_% yields

< — Cy(9,

d
it 23 HLl(Q)

), the Young inequality, and the Sobolev interpolation

4N
6+3N
HL(Q)

6+3N
L1(Q)

T, R) HV (QO‘S ’ )”(Lz(g))n
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+ O (6,7, B2 |V (pF M5 2| g e |25
T 0 (2@ 170 L)
+ 017((57 T, R)a2
a a—a 2
<Coy(6,T, R)algt?VN HQDEM_ z ‘ L) + C17(8,T, R)a®
o W12
<Cys(5,T, R)a 55 Hsa(?M‘f iy T O T R)a?
1246N a 42
<Cou(6,T, R)a % <H<ng e ™ 1) . (29)

Integrating (29) over [0,7] and taking maximum on both sides of (30) we obtain
that

max (HgogM*a(t)HLl(Q) + 1)

t€[0,T]
12 T 2
—a +6N % _a
= (H‘ngO o)+ 1) + C4(8, T, R)a 5=~ / H‘P& M2 +1ds
0 L'(Q)
<(5—a|Q| —+ 1) + 025(5 T R)algir?\,!\’ max HQD%M_% +1 2. (30)
a o t€[0,T] 0 LY(Q)

Here we used the properties of the cutoff function ¢s. Since for a > 2« > 1 it holds
that 67%|Q] + 1 < Co6%(d), estimate (30) leads to a recursive inequality

Aq < Cor(8,T, R)a“* A% (31)
for

max (MOl +1)
A, = . - +1.
O3,

A standard induction argument together with estimate (27) for a := 2« implies that

AQQ%HO‘ = (027(6’ T, R)aCQS)ZZ;S 2 9C2s E;;é(n-&-l—k)z’“*"AQoz
njm027((5, T, R)aC2s 23028142@
<Co9(0,T, R). -
Thanks to (32) we obtain that

max] HM_1

< max H(ng_l
s€[0,t ]

selot O] [P

() Lo (a0 507)

=max m osM 7 (1) oo

1
<lim sup Cag (5)A222111;
n—oo
1

<C%(8)C35 (8, T, R)
=:C30(5,T, R).
Consequently, it holds that
inf {M(s,z)| t € [0,T], z € {My > 6}} > (Cs0 (6/2, T, R)) " =: C4(6,T,R) > 0
for all § € (0, || Mo 1(q)) and T > 0, which proves (18).
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The above calculations -and thus also the quantitative estimate (18)- are only
valid if M (¢,-) is uniformly bounded from below on {My > d} for all ¢t € [0,T]. In
order to justify the latter we apply a standard approximation argument. In [15,18]
(see also [28, Section 3.2]) we proved that on the one hand a weak solution is unique,
and on the other hand it can be obtained as a limit of approximations which solve
a nondegenerate system such as, e.g., for n € N the system

« v

- f (Mn,pn) in (O,T) X 97
Orpn =Apy — g(My, pn) in (0,7) x Q

equipped with the same initial and boundary conditions as for the original system
(1). Since M, > 0 solves a nondegenerate equation, its strict positivity is guaran-
teed. Moreover, it is not difficult to see that family M,,, n € N, satisfies a positive
bound similar to (18) with some constant which is independent of n. Consequently,
the limit function M is indeed uniformly bounded from below by a positive constant
and satisfies (18).

3. Let M := u=7. Under this change of variables equation (1a) takes the form

1 19 1 Y Yo ol 1
a+1 = Au — a1 . —ueti Ap — ( atT, )
a+1u Oru P U a+1u Vp-Vu—u p—flu p( )
33

Dividing (33) by ailu%ﬂfl, we obtain that

Oy = uaHT Ay — vuﬁVp -Vu — (a+ 1)U%Ap —(a+ Dust f (u%ﬂ,p> ,

ie.,
Ou = apAu + a1 - Vu + as, (35)

with

ap = ust,

ay = —W’UZ%}V/%

ag = —(a+ 1)uz;ﬂAp — (a4 ua+ f (u#l,p) .
Due to the results of parts 1. and 2. of this Lemma and assumptions on «, -y, and
f, we have for all 0 < 7 < T and 6 € (0, || Mol () that in [7,T] x {My > 6} =
[7,T] x {ug > §*T1} equation (35) is a nondegenerate linear parabolic PDE with

Holder continuous coefficients. Standard result [24, Chapter 10, Theorem 10.1] on
interior regularity in Holder spaces yields that

||uHCL2<[T,T]><W) < 031 (5, T, T, R) . (36)

Since the map u —+ u=iT is smooth in RF, (19) is a consequence of (36). Lemma
2.2 is proved. O



12 MESSOUD EFENDIEV AND ANNA ZHIGUN

Stability. As was mentioned earlier, the initial boundary value problem (1) is well-
posed (in the usual Hadamard sense). In particular, the following stability result
was proved in [15,18]:

Lemma 2.3 (Lipschitz property, [15,18]). There ezists a function Lo : Rf x R —
RS‘ with Lo(0,-) = 1, which is continuous, increasing in each variable, depends
only upon the parameters of the problem, and such that the following Lipschitz-type
estimate holds:

max

sE[O,t]H(J\I1 N M27p1 - pz)(S)HH—l(Q)XIp(Q)

1
2

¢
+ </0 (M7= M5 My — M) g ds) + o1 = p2llz0m3 @)
<Lo(t, R)[[(M1o — M2o, p1o — p20)ll -1 () x £2(02)- (37)

It is possible to estimate the difference M7 — My in L>°(Q2) by replacing (37) with
a Holder property:

Lemma 2.4 (Holder property). There exists a constant 0o, € (0,1) and a function

Ly R(J{ X R0+ — RT which is continuous, increasing in each variable, depends only

uporithe parameters of the problem, and such that for all (Mg, p10), (M20, p20) €

tce(f)z)t; f2+0(9) with ||(Mo, po)ll co@yx c2ro@y < R for some R > 0 it holds for all
> a

My — My, p1 — -
SIS[%,)%]”( 1 2,01 = p2)(8)|| L= ()

<Ly(t,R)||[(Mio — M2g, p1o — p20)||?{oil(§2)><L2(Q)' (38)

Proof. Combining (37) with the interpolation inequalities (13)-(14) applied to w =
(My — M3)(s) and v = (p1 — p2)(s), we deduce that

SIQ[%>§]||(M1 — Ma, p1 — p2)(8)|| Lo (@) x Wi (@)

<O L (1, )R Mg — Mool
+ CoaLE (0 B)R)™ oro — paol % o
<Ly(t,R)||[(Mio — Mg, p1o — P20)||?{°‘11(Q)><L2(Q)7
where 0, := min{6,605}. O

Absorbing set. It was proved in [21] that the initial boundary value problem (1)
generates a well defined semigroup S(t), ¢t > 0, in the phase space L> () x W1 (Q)
which possesses a bounded exponentially absorbing positively invariant set By. In
particular, the following dissipative estimate holds [21]:

—Weol

||(M, P)(t)HLOC(Q)levw(Q) SCOO”(MOvpO)HZO;(Q)xWLOC(Q)e
+ Do for all ¢ > 0, (39)
where the positive constants Cuo, T'oo, Woo, Doo depend only upon the parameters of

the problem. Due to Lemma 2.2, the absorbing set can actually be chosen in a nicer
space:

Lemma 2.5 (Absorbing set). The semigroup S(t) possesses an ezponentially ab-
sorbing positively invariant set B C C?(Q) x C**%(Q) (6 € (0,1) as in Lemma 2.2)
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such that for some R > 0 which depends only upon the parameters of the problem
it holds for all (My, po) € B that

||(M07PO)HCH(§)><CQ+9(§) <R (40)
Moreover, the solutions (M, p) := S(-)(Mo, po) belong to
(C’g’e([O, 00) x Q)N CH2 (RY x {My > 0})) x C15:210([0, 00) x Q) and satisfy for
all § € (0, || Mol|r=(q)) andt >0 the inequalities

H(M, P)||Cg,e([07t]Xﬁ)xcug,us([wxﬁ) < CBB(t)v (41)
inf {M(S,Jj)| s € [Oat]a T E {MO > 6}} > C'34(57 t)a (42)
1Ml (10,0 aosa7) < Ca5(8,1)- (43)

Proof. Set B := S(1)By. Due to a standard argument, 5 remains an exponentially
absorbing positively invariant set for S(¢). On the other hand, Lemma 2.2 ensures
(40)-(43) (choose 7:=1and T :=t+1). O

3. A smoothing property. The aim of this section is to prove that the semigroup
S(t) generated by system (1) is asymptotically smooth. Recall that due to the
general theory presented in [9] (see also references therein) every asymptotically
smooth semigroup possesses an exponential attractor. More notation is needed first.
Let

w:=(M,p),
X := H Q) x L*(Q). (44)
Following [17], we introduce for any ug := (Mg, pg) € B some suitable ug-dependent

spaces and an operator. In our case a possible choice is as follows: for § €
(0, HMOHLOO(Q)) and 0 < t; <t set

V0 = L2((t1,t) x {Mo > 6}) x (L*((t1,t), H'({My > 6})) N L*((t1,t) x Q))
29 = WOD2((11,1) x {Mo > 3))

o (W(1,2)72((t1’t) x {My > §}) mﬂl([o,t],Hé(Q),H‘l(Q))) ;
Kz(ti) :B— ZY K(5)(u10)(s) 1= (S(s)wi0)|(ar>s) for all s € [0,1], uro € B.

ug ? wug
Observe that since My is a continuous function, the level sets {My > d} are open.
Hence, the spaces Yu(f ) and Zq(ff,) are well defined.

Now we can formulate a smoothing property for our case:

Theorem 3.1 (Smoothing property). Let  be a smooth bounded domain in RV,
N € {1,2,3}. Let the functions f and g satisfy assumptions (4)-(7) and (11) and
let the given constants « and v satisfy 5 + 1 < v < a. Then there erist some
constants A1, As,d,e,T > 0 depending only on the parameters of the problem and
such that the following smoothing property holds for the operator S(T):

[(S(T))(u10) = (S(T))(uz20) [ x < %Hulo — uollx

o)

+ A quf)(um) - KSO%)(WO)

()
v

)

HK,Eé)(uw) = K52 (o)

(5) < Az|luro — ugol|x (45b)
7 2

ug
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for |luo — uiol|x, [[uo — u2ollx <&, uo,ur0,u20 € B, (45¢)
where B is the absorbing set from Lemma 2.5.

Due to the presence of the taxis term it seems impossible to handle the difference
M — My in L', as is done for the porous medium equation in [9, Chapter 4]. This
is the reason why we use the H '-norm instead. It offers another convenient choice
for a degenerate equation. We first recall some useful and well known facts about
the gradient operator (V), its adjoint (V*), and pseudo-inverse (V*):

Hy(Q) === (1) == H}(Q),

* + —1
V==V V= VI ),

VYV = id, (46)
(=A)"t =vrvt (47)
V(AL =Vt (48)
IV u* |2y = lu* || g-1(0)- (49)

Here HV(H(}(Q)) denotes the orthogonal projection on V (H¢(£2)) which is a closed
subspace of (L2(2))V.

Proof of Theorem 3.1. Let (Mo, po), (Mo, p10), (Mag, p20) € B be any points such
that

(Mo — Mo, po — pro)ll -1 xr2(9), I[(Mo — Mag, po — p20) | -1 () x£2(0) < €
(50)

for some € > 0 which we will fix later on. Due to the interpolation inequality (13)
we obtain that

| Mo — Miol|pe= (0, |Mo — Mao||r(q) < Csee®. (51)

Let (M, p), (Mx,p1),(Ma, p2) be the corresponding solutions to system (1). Sub-
tracting equation (la) for solutions (M, p1) and (Maz, p2) we obtain with (11)
that

0u(My = M) =— A (M = ME*) = V- (M] = M3) o)
= V- (M{V(p1 = p2))
— F5(My — Ma) — (f(Mf,m) - f(Mzﬁapz)) . (52)
Further, in order to shorten the notation we introduce the quantities
W= M, — My, Wy:=W(0), v:=p;—p2, v:=1v(0),
Us,e,r := max {M;(s,z), Ma(s,z)|t € [0,T], z € {Mo < d}}.

Our first goal is to progress towards the 'contractive’ part of estimate (45a). In
order to achieve this we need to obtain some kind of dissipativity estimate for
| M|| -1 (q) with perturbation terms which do not contain norms of M-component
on level sets {My < §}. Multiplying (52) by (—=A)~!W and integrating over Q, we
arrive at

2 |vrw? o Mt — Mg+ My — My)

(L2 a+1 ( L2(Q)
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+ ((Miy - M;)VPQ? V+*W) (L2(Q))™

* * 2
—|— (M?VU,VJF W)(L2(Q))n - F5 ||V+ WH(LZ(Q))"

_ <f(M1ﬁ7p1) 2( N ‘f ( 2 ’pz) ,VJFVJF*W)LQ(Q)
(53)

Here we used the definition of the adjoint and properties (47)-(48). Using the
inequalities

1 o a2
(Mla-i-l _M20<+1) (Ml —M2) > LQ (M11+2 _ M21+2> ; (54)
(1+3%)
EmaX{Ml,Mg ]Ml M3| > |M{ — M| for all ¢ > b >0, (55)

and assumptions v, 3 > 1+ 5, we can estimate the terms on the right-hand side of
(53) in the following way:

1+5

— (Mot — Mot M — M 56
(M 5 My — M) Lz(n)’ (56)

1+%
iy < 037HM P M,

’((M” M)V pa, VHW)

(L2()m
<Css ’|V+*WH(L2(Q (||M7 M3 Nl p2(parg<oyy + 1M1 — M;||L2({Mg>6}))

<o [V W g (U587 a5 -

. ||WL2<{M0>5}>)(7 |
o7

M])Vu, VW
o

(L2())

: (||M1 V“HLz({Moga}) + HM?VUH(LQ({Mwé}))")

<Cu HVJF*WH(B(Q))'”

’ (UQE,T ||VU||(L2(Q))n + HVUH(LZ({MO>5}))"> , (58)

‘(f(Mf,pl) —~ F(MEp2) VHVEW)

L3(Q)

<Cyo HVHWH(L?(Q))" <HM1§ a

oy Il

<Ca HVJr WH 2(Q))n
. B _ afB B _ apB
<HM1 M: ‘ L2({Mo<5)) HMl M ‘L2<{Mo>6}> * ”U”LZ(Q)>
+
<Cu HV WH L2(Q)"
QﬁQZ @ 1+7 1+g
<U55 +2 ]\4'1 2 _ ]\42 2 LQ(Q) + ||WHL2({MU>5}) + ||U|L2(Q)> . (59)

Combining (53) and (56)-(59) with the Young inequality, we conclude that

VWl

2 dt @)n
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<(-Liou (v vy )) v
<{-3 1\ Us . p 5T (L2()
2
+ CasU3 T 1 IV {2y
2 2 2
+ Cue (||W||L2({M0>6}) +IVollipzgar>epym + ||U||L2(Q))
Fs K * 2 K

S <—2 + O47U6,5,T> ||er W||(L2(Q))‘n + C’45U6,e5,T ||vv||?L2(Q))n

+ Cas (IW 132 qasosap) + 1900 caqanosspyn + 10122 ) (60)

where

>0  (61)

2 mi -2 - 2 mi —2—
v — 9min min {~, 5} aﬁy _o min {~, 5} «
o+ 2 o+ 2

due to the assumptions on «a, 8, and 7. We emphasise at this point that our new
and sharper assumptions 7,8 > 1 + § allow not only to absorb the L? norms of
the differences of some powers of M; and Ms coming from the taxis and reaction
terms, but also to obtain some dissipativity with respect to ||V+*W||?L2(Q))n in
(60). Indeed, as we will see later, Us . v can be made arbitrary small by choosing
¢ and § sufficiently small. Thanks to x > 0 this leads to a negative coefficient
(f% + C47U£57T)' With v or 3 equal to 1 + 5 we would have x = 0 instead

and thus a potentially positive coefficient (f% + C’47) which only guaranties an
estimate such as (37).

Leaving (60) for while we will now establish an bound for ||v||. Once again,
we need to take care so as not to include any LP({My < §})-norms of W in our
estimates. Subtracting equation (1b) for (M, p1) and (Ms, p2) we obtain that

v = Av — G1v — (g2(p1) — g2(p2)) M1 — g2(p2)W. (62)

Multiplying (62) by v, integrating over €2, and using (46), we obtain that

d
Sdt ||”U||2L2(Q) == ||V”U||?L2(Q))n -Gy ||”U||2L2(Q) = (92(p1) — 92(:02)7M1U)L2(Q)
= (W, 92(p2)v) 120
== ||vv||?L2(Q))n -Gy ||”||2L2(Q) = (92(p1) — 92(P2)7M10)L2(Q)
. d
- (V+ W, g2(p2) Vo + Ude(Pz)sz) - (63)
p (L2@)r

Using the assumptions on go and the Young inequality we conclude from (63) that

1d
2dt ||”HL2(Q HV”H(L2(Q))n -Gy ||”HL2(Q) + Cug (Mla ) L2(Q)

+ |‘V+*WH(L2(Q))” (IIVollz2@n + vl L2)
1
§C50 ||V+*WH?L2(Q))TL - 5 ||vv||?L2(Q))” + C51||U||%2(Q) (64)

Let us now multiply the inequality (64) by the constant Cps := and add it to

(6()). This yields

Fs
4C’s0

2 dt ("v+*W”(L2(Q))n + 052 HU||i2(Q))
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F * #
(B )P L)

2 2
+ Csa[v]|72 () + Cas (HW||L2({M0>6}) + ||va(L2({M0>6}))") : (65)
Observe that due to (38) and (50) it follows for all 6 € (0, || Mol (o)) that
User <6+ L(T,R)e">. (66)

Combining (65)-(66) and recalling that x > 0 due to (61), we conclude that if 6 and
¢ are chosen in such a way that

1
Fs  Cs3 |~

§ + L(T, R)’> < min { (67)

then
1d 2 2
+ %

5% (Hv WH(LZ(Q))n + 052 ”vHL?(Q))

_ Css
" 2

2 2

+Cs (HW||L2<{M0>6}> + ||WH<L2<{M0>6}))")

<= Cis (VW oy + Coa 020

2 2
+ Css (IWl 2 qatyssy + IOtz + I0132) - (69)

Using the Gronwall lemma, the Lipschitz property (37), and property (49) we obtain
with (68) that for all 0 <t; < T

W (D) 1310y + Co2 10(D) 1320

<em20s(T—1) (HW(tl)Hilfl(Q) + Cs2 ||v(t1)H2L2(Q))

F5 * 2 2
<= 2 [VWIL g IVl tza @y + CoallolZzqay

T
55 (s— 2 2
+ QCSG/t 20 (s=T) (||W||L2({Mg>6}) +IVolliLz(par>epym + H’UH%Z(Q)) ds

§C57L(2)(t1, R)e—2Css(T—t1) (”WO”%VI(Q) + Css ||U()Hi2(9))

T
2 2
+ QCSG/t W22 (tato>ay) + 1V0MCL2 (gt 55y )m T 10117 2(0) s, (69)
which finally leads to the estimate

I(W(T), v(T))lx <CssLo(ts, R)e™ > T=[(Wo, v) | x + Cso [|(W, )0

1
<51 (Wo, vo)llx + Cso [|(W, v) .00 (70)

if ;1 and T are such that

C5SL0(t1,R)67055(T7t1) S . (71)

DN | =

Next, we study the pair (W, v) on the sets {My > §}. On these sets the equation
for M is non-degenerate, which allows to use standard estimates for uniformly par-
abolic PDEs and thus obtain better regularity. Starting once again with equations
(52) and (62), we now rewrite them in the following way:

8tW:Mf‘AW+b1 VW+b2W+b3A’U—|—b4 ~Vv+b5v, (72&)
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8tv =Av + bG’U + b7W, (72b)
where

by :=a M V(M + My) — M)~ Vp,,

My — Mg M=t — Mgt My — MJ]
by =1 2 AM 1 2 M2 = 24 2 A
> My, — M, 2o My — M, VAL, My — M, P~
My - My f(My, p1) = f(Mz, p1)
Vil W S v /A _
7 My — M, Vit Vo My — M, ’
b3 ::—1\4;7

by == — y My 'V My,
f(Ma, p1) — f(Ma, p2)

b5 = s
P1 — P2

b = — g(My, p1) — Q(Mlvlh)’
P1— P2

by 9(My, p2) — 9(Ma, p2)
My — M,

Observe that due to (51) we have for all &y € (0, || Mo|| = (q)) that

inf {Mlo(l‘), Mgo(l‘)| S {Mo > (50}} 2(50 — 036691

>_Y
2% (73)
so that, due to (42),
1)
inf {M(t,:l?)| s € [O,t], S {M() > 50}} > (Csy (20,t) s (74)
if
6, _ %
0366 ! < ? (75)

Thus, for such §y and e system (72a) is a nondegenerate linear parabolic system

w.r.t. (W,v). Moreover, coefficients b; are compositions of continuous functions
with My and pg, K = 1,2, and their partial derivatives up to the second order.
Lemma 2.5 implies that b;’s all belong to L>((0,T) x {My > do}). Altogether,
standard results on interior regularity in Sobolev spaces (see, e.g., Theorems 9.1
and 10.1, and the remark on local estimates in Sobolev spaces at the end of §10
in [24, Chapter IV]) together with estimates from Lemma 2.5 imply that for all
0<tg<ty <Tanddy < d <y it holds

IWllw 220, 1) x (Mo 621
<Cs0(01,02,t1,T) (IW | 22((to.1) x {00560 + [0l w2, 1) x (Mo>611)) s (T6)
lvllw 22k, 1) x (Mo 01 1)
<Ce1(6,61,t0,T) (vl 20,7 x (Mo >801) + IW I L2((0,7)x {Mo>501)) - (77)
Plugging (77) into (76), we obtain that

||W||W(1v2)=2((t1,T)><{M0>52}) SC@2(67 01,02, to, t1, t)” (W U)||L2([0,t]><{Mo>50})' (78)
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Thus, choosing dg := g, 01 = %, dg 1= g in (78) and d¢ := g, 0y =
(77) yields

NS,

,to = tl in

W)l w22 (0 1y {v10> 8392 <Co3 (8, t1, TIW )l 20,1y x {00 > 2)y2+ - (79)
Combining (79) with (37), (74), and the inequalities (54) and

My — M| < inf{ My, My}~% | M, "% — My (80)

o+ 2

we thus arrive at the estimate

W, o)l (w22 (.1 x a0 > 3 1)

1
2

T
§064(5,t17T) (/ (Mf‘+1 _ M2°‘+1,M1 - MQ) dS) + 063(57 tlaT)HU”L?((O,T)XQ)
0

<C5(6,t1, T)|(Wo, vo) | r-1(0) x £2(02)- (81)
Next, we recall that due to (37) it holds that

vl 220,12 () < Lo(T, R)|[[(Wo, vo)ll -1(0)x L2 () - (82)
Going back to (62), we compute that

”atU”H*l(Q)
=[|Av — G1v = (g2(p1) — g2(p2)) M1 — g2(p2)W [ z-1 ()
<l[vllaa o) + Gillvll -1y + Cosl| Ml (o) l92(p1) — g2(p2) [l 220
+ Corllg2(p2)lw .o @) Wl -1
<Cos(R) (1ol myon + Wil - (83)
Integrating (83) over (0,¢) and combining with (37) and (82), we finally obtain that

[0l 21 (0,1, 152 (@), 151 (2)) < Coo (R, T)[[(Wo, v0) || zr-1(0)x L2(02)- (84)

With (70), (81), (84) we have the conditions of the smoothing property (45), it only
remains to choose the parameters in such a way that conditions (67), (71), and (75)
(recall that §y = %) are satisfied, i.e., if

. Fs  Css g
§+ L(T,R)e? <
+ L(T,R)e _mln{8047,2045} , (85)
1
ClSLO(tlaR)eic%(Titl) S 57 (86)
)
036601 S g (87)

Clearly, the exist such t1, T, d, and €, that conditions (85)-(87) are satisfied. Indeed,
for any ¢; > 0 one can choose T large enough so as to fulfil (86). Then, choosing
§ := 8C36c? in order to comply with (87), it remains to choose ¢ so small as to
meet (85). Theorem 3.1 is proved.

O
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4. Proof of Theorem 1.2. We are finally ready for the

Proof of Theorem 1.2. Our proof goes through the following steps. First, we prove
the existence of an exponential attractor M in H~1(Q) x L?(92)-metric. This we
achieve with the help of the smoothing property (45). Finally, we use the Sobolev
interpolation inequality in order to show that M is at the same time an exponential
attractor in L>(Q) x W (Q)-metric.

Due to Theorem 3.1 the exists a number 7' > 0 such that for S(T") the smoothing
property (45) holds. The existence of an exponential attractor for the discrete
semigroup S(nT),n € N, in the set B C X is a consequence of Remark 4.3 of [9],

s
we only need to verify that quf) is uniformly (w.r.t. ug € B) compactly embedded

in Y,E{f ). Due to Lions-Aubin lemma, we have that
H' ((¢1,7),Hy (), H'(Q)) cCL? ((t1,T), L*(Q)) . (88)

Therefore, we only need to study the (obviously continuous) canonical embedding

g W22 ((tl,t) X {Mo > g}) — L2((t1,t), HY({My > 6})),

g 2= U| (4, 4) x { Mo >57}-

We proceed similar to [17, Proposition A.5], where the case of a Holder space em-
bedded in the space of continuous functions on a smaller domain was considered.
Let us define for each uy € B an extension operator

5
Pug : WH22 ((tl,t) X {Mo > 2}) — WE2D2((4,4) x Q)

 Jemeu in {Mo > %},
Pyt = . 5
0 in {MO < 5}.
Here ¢y, is any cutoff function which satisfies (16) for 0y := i—‘s and §; = 4.
Since @y, is a test function and compactly supported in {Mo > g}, it follows that
{Puo tuoen is a family of well defined continuous linear operators. Moreover, even
though these operators are defined on different spaces, their norms are uniformly
bounded:

Ipuoll < A, for all up € B (89)

for some constant A, > 0. This is a consequence of property (16¢). Note also that
our choice of cutoff function guaranties that

Puot =u in (t1,t) x {My > d}. (90)
Next, we define a restriction operator
Cup ¢ L2((1, 1), H'(Q)) > L2((, 1), H ((Mo > 81), €t = tl gy 2551
In this case, the value ranges depend upon ug, but, clearly,
cu || <1 for all uy € B. (91)
Finally, we recall that due to the Lions-Aubin lemma the canonical embedding
G WED2((44) x Q) = L2((t1, 1), HY(Q)), ju=u
is compact. Observe that due to (90)
Ty = CugJPug- (92)
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Using (89) and (91), we compute that

o (n o - (i )

L2((t1,t), H ({Mo > 6})))
1)

=N, <cuO JPuo (B (0, 1, w122 ((t1 {MO >
L*((t,t), H' ({Mo > 6})))
SNT <jpu0 (B (071;W(1’2)’2 <(t17t) {MO > = }))) L2 tla ’ I(Q))>
(7 (B (0,4 W22 ((21,6) x 9)) ) s L2((11,1), HY(9))) (93)
where B(0, 1; V) denotes the unit ball in a normed space V, and N,.(C; V') denotes
the minimum number of balls of radius 7 > 0 needed in order to cover a compact

set C C V. Since the bound on the right-hand side of (93) is independent of
ug, the embedding family {i,,} is indeed uniformly compact. Due to the above

N

observation this carries over to the embedding ZSO% ) cC Yu(g). Therefore, with
Remark 4.3 from [9] we conclude that there exists an exponential attractor My for
the semigroup S(nT),n € N, in B (equipped with the H~1(Q) x L?(2)-topology)
and its dimension and attraction parameters depend only upon the parameters of
the problem. As usual (see, e.g., [9, Remark 3.2]), the required exponential attractor
M C B for the continuous-time semigroup S(¢),¢ > 0 can be defined via

U seMmrcB

te[0,T]

For this construction to work, it suffices (compare [9, Remark 3.2]) to check that
the map (t,ug) — S(t)ug is, say, Holder continuous on [0,7] x B.  The Hélder
continuity w.r.t. ¢ is a consequence of the regularity result (41) and the Sobolev
embedding theorem. The Lipschitz continuity with respect to wug is given by the
Lipschitz property (37). In both cases such parameters as the Holder/Lipschitz
constants and the Holder exponent can be chosen to depend upon the parameters
of the problem. Consequently, M is indeed an exponential attractor for S(t¢) in
B equipped with the H~1(Q) x L?(Q)-topology and its dimension and attraction
parameters depend only upon the parameters of the problem.

Finally, we observe that due to the interpolation inequalities (13)-(14) the canon-
ical embedding of B equipped with (the norm-induced) H~1(2) x L?(Q)-metric and
B equipped with (the norm-induced) L> () x W°(Q)-metric is Hélder contin-
uous. Consequently, M is an exponential attractor for S(¢) in B equipped with
L (Q) x W°(Q)-metric and, once again, its dimension and attraction parame-
ters depend only upon the parameters of the problem. Combining this with the
fact that B is an exponentially absorbing set in L>°(2) x W1°°(Q) and its diameter
and absorption parameters depend only upon the parameters of the problem, we
conclude that M is an exponential attractor for S(t) in L>(Q2) x Wh°(Q) and
its dimension and attraction parameters depend only upon the parameters of the
problem, as required. Theorem 1.2 is thus proved. O
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