127 research outputs found

    Individual differences in the shape of the nasal visual field

    Get PDF
    AbstractBetween-subject differences in the shape of the nasal visual field were assessed for 103 volunteers 21–85years of age and free of visual disorder. Perimetry was conducted with a stimulus for which contrast sensitivity is minimally affected by peripheral defocus and decreased retinal illumination. One eye each was tested for 103 volunteers free of eye disease in a multi-center prospective longitudinal study. A peripheral deviation index was computed as the difference in log contrast sensitivity at outer (25–29° nasal) and inner (8° from fixation) locations. Values for this index ranged from 0.01 (outer sensitivity slightly greater than inner sensitivity) to −0.7 log unit (outer sensitivity much lower than inner sensitivity). Mean sensitivity for the inner locations was independent of the deviation index (R2<1%), while mean sensitivity for the outer locations was not (R2=38%, p<0.0005). Age was only modestly related to the index, with a decline by 0.017 log unit per decade (R2=10%). Test-retest data for 21 volunteers who completed 7–10 visits yielded standard deviations for the index from 0.04 to 0.17 log unit, with a mean of 0.09 log unit. Between-subject differences in peripheral deviation persisted over two years of longitudinal testing. Peripheral deviation indices were correlated with indices for three other perimetric stimuli used in a subset of 24 volunteers (R2 from 20% to 49%). Between-subject variability in shape of the visual field raises concerns about current clinical visual field indices, and further studies are needed to develop improved indices

    Mississippi River and Sea Surface Height Effects on Oil Slick Migration

    Get PDF
    Millions of barrels of oil escaped into the Gulf of Mexico (GoM) after the 20 April, 2010 explosion of Deepwater Horizon (DH). Ocean circulation models were used to forecast oil slick migration in the GoM, however such models do not explicitly treat the effects of secondary eddy-slopes or Mississippi River (MR) hydrodynamics. Here we report oil front migration that appears to be driven by sea surface level (SSL) slopes, and identify a previously unreported effect of the MR plume: under conditions of relatively high river discharge and weak winds, a freshwater mound can form around the MR Delta. We performed temporal oil slick position and altimeter analysis, employing both interpolated altimetry data and along-track measurements for coastal applications. The observed freshwater mound appears to have pushed the DH oil slick seaward from the Delta coastline. We provide a physical mechanism for this novel effect of the MR, using a two-layer pressure-driven flow model. Results show how SSL variations can drive a cross-slope migration of surface oil slicks that may reach velocities of order km/day, and confirm a lag time of order 5–10 days between mound formation and slick migration, as observed form the satellite analysis. Incorporating these effects into more complex ocean models will improve forecasts of slick migration for future spills. More generally, large SSL variations at the MR mouth may also affect the dispersal of freshwater, nutrients and sediment associated with the MR plume

    A dense mini-Neptune orbiting the bright young star HD 18599

    Get PDF
    © 2022 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stac2845Very little is known about the young planet population because the detection of small planets orbiting young stars is obscured by the effects of stellar activity and fast rotation which mask planets within radial velocity and transit data sets. The few planets that have been discovered in young clusters generally orbit stars too faint for any detailed follow-up analysis. Here we present the characterization of a new mini-Neptune planet orbiting the bright (V=9) and nearby K2 dwarf star, HD 18599. The planet candidate was originally detected in TESS light curves from Sectors 2, 3, 29, and 30, with an orbital period of 4.138~days. We then used HARPS and FEROS radial velocities, to find the companion mass to be 25.5±\pm4.6~M⊕_\oplus. When we combine this with the measured radius from TESS, of 2.70±\pm0.05~R⊕_\oplus, we find a high planetary density of 7.1±\pm1.4~g cm−3^{-3}. The planet exists on the edge of the Neptune Desert and is the first young planet (300 Myr) of its type to inhabit this region. Structure models argue for a bulk composition to consist of 23% H2_2O and 77% Rock and Iron. Future follow-up with large ground- and space-based telescopes can enable us to begin to understand in detail the characteristics of young Neptunes in the galaxy.Peer reviewe

    Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Harmful Algae 14 (2012): 271-300, doi:10.1016/j.hal.2011.10.025.Over the last decade, our understanding of the environmental controls on Pseudo-nitzschia blooms and domoic acid (DA) production has matured. Pseudo-nitzschia have been found along most of the world's coastlines, while the impacts of its toxin, DA, are most persistent and detrimental in upwelling systems. However, Pseudo-nitzschia and DA have recently been detected in the open ocean's high-nitrate, low-chlorophyll regions, in addition to fjords, gulfs and bays, showing their presence in diverse environments. The toxin has been measured in zooplankton, shellfish, crustaceans, echinoderms, worms, marine mammals and birds, as well as in sediments, demonstrating its stable transfer through the marine food web and abiotically to the benthos. The linkage of DA production to nitrogenous nutrient physiology, trace metal acquisition, and even salinity, suggests that the control of toxin production is complex and likely influenced by a suite of environmental factors that may be unique to a particular region. Advances in our knowledge of Pseudo-nitzschia sexual reproduction, also in field populations, illustrate its importance in bloom dynamics and toxicity. The combination of careful taxonomy and powerful new molecular methods now allow for the complete characterization of Pseudo-nitzschia populations and how they respond to environmental changes. Here we summarize research that represents our increased knowledge over the last decade of Pseudo-nitzschia and its production of DA, including changes in worldwide range, phylogeny, physiology, ecology, monitoring and public health impacts

    Myoferlin Depletion in Breast Cancer Cells Promotes Mesenchymal to Epithelial Shape Change and Stalls Invasion

    Get PDF
    Myoferlin (MYOF) is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET). These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin) and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNAMYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF

    <i>TESS</i> Spots a Compact System of Super-Earths around the Naked-eye Star HR 858

    Get PDF
    Transiting Exoplanet Survey Satellite (TESS) observations have revealed a compact multiplanet system around the sixth-magnitude star HR 858 (TIC 178155732, TOI 396), located 32 pc away. Three planets, each about twice the size of Earth, transit this slightly evolved, late F-type star, which is also a member of a visual binary. Two of the planets may be in mean motion resonance. We analyze the TESS observations, using novel methods to model and remove instrumental systematic errors, and combine these data with follow-up observations taken from a suite of ground-based telescopes to characterize the planetary system. The HR 858 planets are enticing targets for precise radial velocity observations, secondary eclipse spectroscopy, and measurements of the Rossiter–McLaughlin effect

    A dense mini-Neptune orbiting the bright young star HD 18599

    Get PDF
    Very little is known about the young planet population because the detection of small planets orbiting young stars is obscured by the effects of stellar activity and fast rotation which mask planets within radial velocity and transit data sets. The few planets that have been discovered in young clusters generally orbit stars too faint for any detailed follow-up analysis. Here we present the characterization of a new mini-Neptune planet orbiting the bright (V=9) and nearby K2 dwarf star, HD 18599. The planet candidate was originally detected in TESS light curves from Sectors 2, 3, 29, and 30, with an orbital period of 4.138 days. We then used HARPS and FEROS radial velocities, to find the companion mass to be 25.5±4.6 M⊕. When we combine this with the measured radius from TESS of 2.70±0.05 R⊕, we find a high planetary density of 7.1±1.4 g cm-3. The planet exists on the edge of the Neptune Desert and is the first young planet (300 Myr) of its type to inhabit this region. Structure models argue for a bulk composition to consist of 23 per cent H2O and 77 per cent Rock and Iron. Future follow-up with large ground- and space-based telescopes can enable us to begin to understand in detail the characteristics of young Neptunes in the galaxy

    A Mini-Neptune from TESS and CHEOPS Around the 120 Myr Old AB Dor Member HIP 94235

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) mission has enabled discoveries of the brightest transiting planet systems around young stars. These systems are the benchmarks for testing theories of planetary evolution. We report the discovery of a mini-Neptune transiting a bright star in the AB Doradus moving group. HIP 94235 (TOI-4399, TIC 464646604) is a V mag = 8.31 G-dwarf hosting a 3.00-0.28+0.32RùƠ mini-Neptune in a 7.7 day period orbit. HIP 94235 is part of the AB Doradus moving group, one of the youngest and closest associations. Due to its youth, the host star exhibits significant photometric spot modulation, lithium absorption, and X-ray emission. Three 0.06% transits were observed during Sector 27 of the TESS Extended Mission, though these transit signals are dwarfed by the 2% peak-To-peak photometric variability exhibited by the host star. Follow-up observations with the Characterising Exoplanet Satellite confirmed the transit signal and prevented the erosion of the transit ephemeris. HIP 94235 is part of a 50 au G-M binary system. We make use of diffraction limited observations spanning 11 yr, and astrometric accelerations from Hipparcos and Gaia, to constrain the orbit of HIP 94235 B. HIP 94235 is one of the tightest stellar binaries to host an inner planet. As part of a growing sample of bright, young planet systems, HIP 94235 b is ideal for follow-up transit observations, such as those that investigate the evaporative processes driven by high-energy radiation that may sculpt the valleys and deserts in the Neptune population
    • 

    corecore