133 research outputs found

    Modeling solar wind mass‐loading in the vicinity of the Sun using 3‐D MHD simulations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106053/1/jgra50759.pd

    The future climate characteristics of the Carpathian Basin based on a regional climate model mini-ensemble

    Get PDF
    Four regional climate models (RCMs) were adapted in Hungary for the dynamical downscaling of the global climate projections over the Carpathian Basin: (i) the ALADIN-Climate model developed by MĂ©tĂ©o France on the basis of the ALADIN short-range modelling system; (ii) the PRECIS model available from the UK Met Office Hadley Centre; (iii) the RegCM model originally developed at the US National Center for Atmospheric Research, is maintained at the International Centre for Theoretical Physics in Trieste; and (iv) the REMO model developed by the Max Planck Institute for Meteorology in Hamburg. The RCMs are different in terms of dynamical model formulation, physical parameterisations; moreover, in the completed simulations they use different spatial resolutions, integration domains and lateral boundary conditions for the scenario experiments. Therefore, the results of the four RCMs can be considered as a small ensemble providing information about various kinds of uncertainties in the future projections over the target area, i.e., Hungary. After the validation of the temperature and precipitation patterns against measurements, mean changes and some extreme characteristics of these patterns (including their statistical significance) have been assessed focusing on the periods of 2021–2050 and 2071–2100 relative to the 1961–1990 model reference period. The ensemble evaluation indicates that the temperature-related changes of the different RCMs are in good agreement over the Carpathian Basin and these tendencies manifest in the general warming conditions. The precipitation changes cannot be identified so clearly: seasonally large differences can be recognised among the projections and between the two periods. An overview is given about the results of the mini-ensemble and special emphasis is put on estimating the uncertainties in the simulations for Hungary

    Probing IMF using nanodust measurements from inside Saturn's magnetosphere

    Full text link
    We present a new concept of monitoring the interplanetary magnetic field (IMF) by using in situ measurements of nanodust stream particles in Saturn's magnetosphere. We show that the nanodust detection pattern obtained inside the magnetosphere resembles those observed in interplanetary space and is associated with the solar wind compression regions. Our dust dynamics model reproduces the observed nanodust dynamical properties as well as the detection pattern, suggesting that the ejected stream particles can reenter Saturn's magnetosphere at certain occasions due to the dynamical influence from the time‐varying IMF. This method provides information on the IMF direction and a rough estimation on the solar wind compression arrival time at Saturn. Such information can be useful for studies related to the solar wind‐magnetosphere interactions, especially when the solar wind parameters are not directly available. Key Points A new method to probe IMF with nanodust measurements inside the magnetosphere Under changing IMF, ejected nanoparticles can re‐enter Saturn‐s magnetosphere IMF direction and solar wind compression arrival time can be derivedPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99078/1/grl50604.pd

    Mass loading of the solar wind by a sungrazing comet

    Full text link
    Collisionless mass loading was suggested by Biermann et al. (1967) for describing interactions between the solar wind and cometary atmospheres. Recent observations have led to an increased interest in coronal mass loading due to sungrazing comets and collisional debris of sunward migrating interplanetary dust particles. In a previous paper, we presented a 3‐D MHD model of the solar corona based on the Block‐Adaptive‐Tree‐Solarwind‐Roe‐Upwind‐Scheme code which includes the interaction of dust with the solar wind. We have shown the impact on the solar wind from abrupt mass loading in the coronal region. We apply the model to a sungrazing cometary source, using ejected dust dynamics to generate tail‐shaped mass‐loading regions. Results help predict the effects on the solar wind acceleration and composition due to sungrazing comets, such as Comet C/2011 W3 (Lovejoy). We show how these effects may be detected by the upcoming Solar Probe Plus Mission. Key Points Application of mass loading in the SWMF SC component for sungrazing comets Extension to a tail source model for mass loading due to a sungrazing comet Prediction of mass‐loaded solar wind parameters along a space probe pathPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108676/1/grl51967.pd

    An improved model of the Edgeworth-Kuiper debris disk

    Full text link
    (Abridged) We access the expected EKB dust disk properties by modeling. We treat the debiased population of the known transneptunian objects (TNOs) as parent bodies and generate the dust with our collisional code. The resulting dust distributions are modified to take into account the influence of gravitational scattering and resonance trapping by planets on migrating dust grains as well as the effect of sublimation. A difficulty is that the amount and distribution of dust are largely determined by sub-kilometer-sized bodies. These are directly unobservable, and their properties cannot be accessed by collisional modeling, because objects larger than 10...60m in the present-day EKB are not in a collisional equilibrium. To place additional constraints, we use in-situ measurements of the New Horizons spacecraft within 20AU. We show that the TNO population has to have a break in the size distribution at s<70km. However, even this still leaves us with several models that all correctly reproduce a nearly constant dust impact rates in the region of giant planet orbits and do not violate the constraints from the non-detection of the EKB dust thermal emission by the COBE spacecraft. The modeled EKB dust disks, which conform to the observational constraints, can either be transport-dominated or intermediate between the transport-dominated and collision-dominated regime. The in-plane optical depth of such disks is tau(r>10AU)~10^-6 and their fractional luminosity is f_d~10^-7. Planets and sublimation are found to have little effect on dust impact fluxes and dust thermal emission. The spectral energy distribution of an EKB analog, as would be seen from 10pc distance, peaks at wavelengths of 40...50\mum at F~0.5mJy, which is less than 1% of the photospheric flux at those wavelengths. Therefore, exact EKB analogs cannot be detected with present-day instruments such as Herschel/PACS.Comment: 10 pages, 8 figures, accepted for publication in Astronomy and Astophysic

    One year of Galileo dust data from the Jovian system: 1996

    Get PDF
    The dust detector system onboard Galileo records dust impacts in circumjovian space since the spacecraft has been injected into a bound orbit about Jupiter in December 1995. This is the sixth in a series of papers dedicated to presenting Galileo and Ulysses dust data. We present data from the Galileo dust instrument for the period January to December 1996 when the spacecraft completed four orbits about Jupiter (G1, G2, C3 and E4). Data were obtained as high resolution realtime science data or recorded data during a time period of 100 days, or via memory read-outs during the remaining times. Because the data transmission rate of the spacecraft is very low, the complete data set (i. e. all parameters measured by the instrument during impact of a dust particle) for only 2% (5353) of all particles detected could be transmitted to Earth; the other particles were only counted. Together with the data for 2883 particles detected during Galileo's interplanetary cruise and published earlier, complete data of 8236 particles detected by the Galileo dust instrument from 1989 to 1996 are now available. The majority of particles detected are tiny grains (about 10 nm in radius) originating from Jupiter's innermost Galilean moon Io. These grains have been detected throughout the Jovian system and the highest impact rates exceeded 100min−1\rm 100 min^{-1}. A small number of grains has been detected in the close vicinity of the Galilean moons Europa, Ganymede and Callisto which belong to impact-generated dust clouds formed by (mostly submicrometer sized) ejecta from the surfaces of the moons (Kr\"uger et al., Nature, 399, 558, 1999). Impacts of submicrometer to micrometer sized grains have been detected thoughout the Jovian system and especially in the region between the Galilean moons.Comment: accepted for Planetary and Space Science, 33 pages, 6 tables, 10 figure

    Charged nanograins in the Enceladus plume

    Get PDF
    There have been three Cassini encounters with the south-pole eruptive plume of Enceladus for which the Cassini Plasma Spectrometer (CAPS) had viewing in the spacecraft ram direction. In each case, CAPS detected a cold dense population of heavy charged particles having mass-to-charge (m/q) ratios up to the maximum detectable by CAPS ( 104 amu/e). These particles are interpreted as singly charged nanometer-sized water-ice grains. Although they are detected with both negative and positive net charges, the former greatly outnumber the latter, at least in the m/q range accessible to CAPS. On the most distant available encounter (E3, March 2008) we derive a net (negative) charge density of up to 2600 e/cm3 for nanograins, far exceeding the ambient plasma number density, but less than the net (positive) charge density inferred from the RPWS Langmuir probe data during the same plume encounter. Comparison of the CAPS data from the three available encounters is consistent with the idea that the nanograins leave the surface vents largely uncharged, but become increasingly negatively charged by plasma electron impact as they move farther from the satellite. These nanograin

    The Edgeworth-Kuiper debris disk

    Full text link
    (Abridged) The Edgeworth-Kuiper belt with its presumed dusty debris is a natural reference for extrsolar debris disks. We employ a new algorithm to eliminate the inclination and the distance selection effects in the known TNO populations to derive expected parameters of the "true" EKB. Its estimated mass is M_EKB=0.12 M_earth, which is by a factor of \sim 15 larger than the mass of the EKB objects detected so far. About a half of the total EKB mass is in classical and resonant objects and another half is in scattered ones. Treating the debiased populations of EKB objects as dust parent bodies, we then "generate" their dust disk with our collisional code. Apart from accurate handling of collisions and direct radiation pressure, we include the Poynting-Robertson (P-R) drag, which cannot be ignored for the EKB dust disk. Outside the classical EKB, the radial profile of the optical depth approximately follows tau \sim r^-2 which is roughly intermediate between the slope predicted analytically for collision-dominated (r^-1.5) and transport-dominated (r^-2.5) disks. The cross section-dominating grain size still lies just above the blowout size (\sim 1...2 \microm), as it would without the P-R transport. However, if the EKB were by one order of magnitude less massive, the optical depth profile would fall off as tau \sim r^-3, and the cross section-dominating grain size would shift from \sim 1...2\microm to ~100 \microm. These properties are seen if dust is assumed to be generated only by known TNOs. If the solar system were observed from outside, the thermal emission flux from the EKB dust would be about two orders of magnitude lower than for solar-type stars with the brightest known infrared excesses observed from the same distance. Herschel and other new-generation facilities should reveal extrasolar debris disks nearly as tenuous as the EKB disk. The Herschel/PACS instrument should be able to detect disks at a \sim 1...2M_EKB level.Comment: 18 pages, 14 figures, accepted for publication in A&
    • 

    corecore