9 research outputs found

    Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32330 subjects from the International Cannabis Consortium

    Get PDF
    Contains fulltext : 156357.pdf (publisher's version ) (Open Access)Cannabis is the most widely produced and consumed illicit psychoactive substance worldwide. Occasional cannabis use can progress to frequent use, abuse and dependence with all known adverse physical, psychological and social consequences. Individual differences in cannabis initiation are heritable (40-48%). The International Cannabis Consortium was established with the aim to identify genetic risk variants of cannabis use. We conducted a meta-analysis of genome-wide association data of 13 cohorts (N=32330) and four replication samples (N=5627). In addition, we performed a gene-based test of association, estimated single-nucleotide polymorphism (SNP)-based heritability and explored the genetic correlation between lifetime cannabis use and cigarette use using LD score regression. No individual SNPs reached genome-wide significance. Nonetheless, gene-based tests identified four genes significantly associated with lifetime cannabis use: NCAM1, CADM2, SCOC and KCNT2. Previous studies reported associations of NCAM1 with cigarette smoking and other substance use, and those of CADM2 with body mass index, processing speed and autism disorders, which are phenotypes previously reported to be associated with cannabis use. Furthermore, we showed that, combined across the genome, all common SNPs explained 13-20% (P<0.001) of the liability of lifetime cannabis use. Finally, there was a strong genetic correlation (rg=0.83; P=1.85 Ă— 10-8) between lifetime cannabis use and lifetime cigarette smoking implying that the SNP effect sizes of the two traits are highly correlated. This is the largest meta-analysis of cannabis GWA studies to date, revealing important new insights into the genetic pathways of lifetime cannabis use. Future functional studies should explore the impact of the identified genes on the biological mechanisms of cannabis use.9 p

    Genome-Wide Association meta-analysis of age at first cannabis use

    No full text
    Contains fulltext : 195854.pdf (publisher's version ) (Closed access)Background and aims: Cannabis is one of the most commonly used substances among adolescents and young adults. Earlier age at cannabis initiation is linked to adverse life outcomes including multi-substance use and dependence. This study estimated the heritability of age at first cannabis use and identify associations with genetic variants. Methods: A twin-based heritability analysis using 8,055 twins from three cohorts was performed. We then carried-out a genome wide survival meta-analysis of age at first cannabis use in a discovery sample of 24,953 individuals from nine European, North American, and Australian cohorts, and a replication sample of 3,735 individuals. Results: The twin-based heritability for age at first cannabis use was 38% (95% confidence interval [CI] 19-60%). Shared and unique environmental factors explained 39% (95% CI 20-56%) and 22% (95% CI 16-29%). The genome wide survival meta-analysis identified five SNPs on chromosome 16 within the Calcium-transporting ATPase gene (ATP2C2) at P 0.8) with the strongest association at the intronic variant rs1574587 (P=4.09E-09). Gene-based tests of association identified the ATP2C2 gene on 16q24.1 (P=1.33e-06). Although the five SNPs and ATP2C2 did not replicate, ATP2C2 has been associated with cocaine dependence in a previous study. ATP2B2, which is a member of the same calcium signalling pathway, has been previously associated with opioid dependence. SNP-based heritability for age at first cannabis use was non-significant. Conclusion: Age at cannabis initiation appears to be moderately heritable in Western countries, and individual differences in onset can be explained by separate but correlated genetic liabilities. The significant association between age of initiation and ATP2C2 is consistent with the role of calcium signalling mechanisms in substance use disorders.14 p

    Genome-wide association meta-analysis of childhood and adolescent internalising symptoms.

    Get PDF
    OBJECTIVE: To investigate the genetic architecture of internalizing symptoms in childhood and adolescence. METHOD: In 22 cohorts, multiple univariate genome-wide association studies (GWASs) were performed using repeated assessments of internalizing symptoms, in a total of 64,561 children and adolescents between 3 and 18 years of age. Results were aggregated in meta-analyses that accounted for sample overlap, first using all available data, and then using subsets of measurements grouped by rater, age, and instrument. RESULTS: The meta-analysis of overall internalizing symptoms (INToverall) detected no genome-wide significant hits and showed low single nucleotide polymorphism (SNP) heritability (1.66%, 95% CI&nbsp;= 0.84-2.48%, neffective&nbsp;= 132,260). Stratified analyses indicated rater-based heterogeneity in genetic effects, with self-reported internalizing symptoms showing the highest heritability (5.63%, 95% CI&nbsp;= 3.08%-8.18%). The contribution of additive genetic effects on internalizing symptoms appeared to be stable over age, with overlapping estimates of SNP heritability from early childhood to adolescence. Genetic correlations were observed with adult anxiety, depression, and the well-being spectrum (rg&gt; 0.70), as well as with insomnia, loneliness, attention-deficit/hyperactivity disorder, autism, and childhood aggression (rangerg&nbsp;= 0.42-0.60), whereas there were no robust associations with schizophrenia, bipolar disorder, obsessive-compulsive disorder, or anorexia nervosa. CONCLUSION: Genetic correlations indicate that childhood and adolescent internalizing symptoms share substantial genetic vulnerabilities with adult internalizing disorders and other childhood psychiatric traits, which could partially explain both the persistence of internalizing symptoms over time and the high comorbidity among childhood psychiatric traits. Reducing phenotypic heterogeneity in childhood samples will be key in paving the way to future GWAS success

    Genetic diversity fuels gene discovery for tobacco and alcohol use.

    No full text
    Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1–4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction

    Contributions of endocannabinoid signaling to psychiatric disorders in humans: genetic and biochemical evidence

    No full text
    corecore