51 research outputs found

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Temporal-spatial variations and source identification of dissolved nitrate in the upper Han River basin, China

    No full text
    Human activities have greatly increased the nitrogen (N) loading in rivers over the past century, and consequently, N pollution has become a severe problem in aquatic systems. Nitrate (NO3-) is the predominant form of dissolved N in aquatic environments. In the present study, we evaluated N pollution characteristics and identified N sources using an isotope tracing technique in the upper Han River, a tributary of the Yangtze River with a length of 925 km in China. The objectives of this study were to evaluate the variations of N concentrations and explore the N sources in different time periods and areas. The results revealed that NO3- had significantly higher concentrations in July (22.75 +/- 17.75 mg L-1) than that in other sampling months (14.00 +/- 10.85 mg L-1 in November, 13.70 +/- 11.55 mg L-1 in January, 4.99 +/- 6.10 mg L-1 in April), and it also presented significant spatial variations (p < 0.05) along the riverine network. Isotope analysis indicated a rather large range of isotope values, implying that the NO3- in the upper Han River originated from different sources, primarily from sewage. There was a large overlap of delta(NO3-)-N-15 values between different sources during the growing season (April/July), demonstrating the various inputs of N sources. Our results revealed the degraded water quality and poor control of N run off into the river. With the assessment of temporal-spatial variation and sources of N, improved management practices can be implemented to protect water resource and avoid further water quality deterioration in the upper Han River

    Temporal and spatial variations of water quality in the Jinshui River, China

    No full text
    Water pollution has become a growing threat to human society and natural ecosystems in recent decades, increasing the need to better understand the spatial and temporal variabilities of pollutants within aquatic systems. This study sampled water quality at 12 sampling sites from October 2006 to August 2008 in the Jinshui River of the South Qinling Mts., China. Multivariate statistical techniques and gridding methods were used to investigate the temporal and spatial variations of water quality and identify the main pollution factors and sources. Two-way analysis of variance (ANOVA) showed that 25 studied water quality variables had significant temporal differences (p
    corecore