80 research outputs found

    Uncharged tRNA Activates GCN2 by Displacing the Protein Kinase Moiety from a Bipartite tRNA-Binding Domain

    Get PDF
    Protein kinase GCN2 regulates translation in amino acid–starved cells by phosphorylating eIF2. GCN2 contains a regulatory domain related to histidyl-tRNA synthetase (HisRS) postulated to bind multiple deacylated tRNAs as a general sensor of starvation. In accordance with this model, GCN2 bound several deacylated tRNAs with similar affinities, and aminoacylation of tRNAPhe weakened its interaction with GCN2. Unexpectedly, the C-terminal ribosome binding segment of GCN2 (C-term) was required in addition to the HisRS domain for strong tRNA binding. A combined HisRS+C-term segment bound to the isolated protein kinase (PK) domain in vitro, and tRNA impeded this interaction. An activating mutation (GCN2c-E803V) that weakens PK–C-term association greatly enhanced tRNA binding by GCN2. These results provide strong evidence that tRNA stimulates the GCN2 kinase moiety by preventing an inhibitory interaction with the bipartite tRNA binding domain

    Greenhouse gas emissions from U.S. crude oil pipeline accidents:1968 to 2020

    Get PDF
    Abstract Crude oil pipelines are considered as the lifelines of energy industry. However, accidents of the pipelines can lead to severe public health and environmental concerns, in which greenhouse gas (GHG) emissions, primarily methane, are frequently overlooked. While previous studies examined fugitive emissions in normal operation of crude oil pipelines, emissions resulting from accidents were typically managed separately and were therefore not included in the emission account of oil systems. To bridge this knowledge gap, we employed a bottom-up approach to conducted the first-ever inventory of GHG emissions resulting from crude oil pipeline accidents in the United States at the state level from 1968 to 2020, and leveraged Monte Carlo simulation to estimate the associated uncertainties. Our results reveal that GHG emissions from accidents in gathering pipelines (~720,000 tCO2e) exceed those from transmission pipelines (~290,000 tCO2e), although significantly more accidents have occurred in transmission pipelines (6883 cases) than gathering pipelines (773 cases). Texas accounted for over 40% of total accident-related GHG emissions nationwide. Our study contributes to enhanced accuracy of the GHG account associated with crude oil transport and implementing the data-driven climate mitigation strategies

    Ион-парная ВЭЖХ производных пиримидина и пурина

    Get PDF
    ПИРИМИДИНЫГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ ОДНОКОЛЬЦЕВЫЕПУРИНЫГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ ДВУХКОЛЬЦЕВЫЕХРОМАТОГРАФИЯ ЖИДКОСТНАЯ ВЫСОКОГО ДАВЛЕНИЯХРОМАТОГРАФИЯ ИОНООБМЕННАЯДНКРНКПРОТИВООПУХОЛЕВЫЕ СРЕДСТВАПРОТИВОВИРУСНЫЕ СРЕДСТВ

    COVID-19 TestNorm: A tool to normalize COVID-19 testing names to LOINC codes.

    Get PDF
    Large observational data networks that leverage routine clinical practice data in electronic health records (EHRs) are critical resources for research on coronavirus disease 2019 (COVID-19). Data normalization is a key challenge for the secondary use of EHRs for COVID-19 research across institutions. In this study, we addressed the challenge of automating the normalization of COVID-19 diagnostic tests, which are critical data elements, but for which controlled terminology terms were published after clinical implementation. We developed a simple but effective rule-based tool called COVID-19 TestNorm to automatically normalize local COVID-19 testing names to standard LOINC (Logical Observation Identifiers Names and Codes) codes. COVID-19 TestNorm was developed and evaluated using 568 test names collected from 8 healthcare systems. Our results show that it could achieve an accuracy of 97.4% on an independent test set. COVID-19 TestNorm is available as an open-source package for developers and as an online Web application for end users (https://clamp.uth.edu/covid/loinc.php). We believe that it will be a useful tool to support secondary use of EHRs for research on COVID-19

    Yeast arginine methyltransferase Hmt1p regulates transcription elongation and termination by methylating Npl3p

    Get PDF
    The heterogeneous nuclear ribonucleoprotein Npl3p of budding yeast is a substrate of arginine methyltransferase Hmt1p, but the role of Hmt1p in regulating Npl3p’s functions in transcription antitermination and elongation were unknown. We found that mutants lacking Hmt1p methyltransferase activity exhibit reduced recruitment of Npl3p, but elevated recruitment of a component of mRNA cleavage/termination factor CFI, to the activated GAL10-GAL7 locus. Consistent with this, hmt1 mutants displayed increased termination at the defective gal10-Δ56 terminator. Remarkably, hmt1Δ cells also exhibit diminished recruitment of elongation factor Tho2p and a reduced rate of transcription elongation in vivo. Importantly, the defects in Npl3p and Tho2p recruitment, antitermination and elongation in hmt1Δ cells all were mitigated by substitutions in Npl3p RGG repeats that functionally mimic arginine methylation by Hmt1p. Thus, Hmt1p promotes elongation and suppresses termination at cryptic terminators by methylating RGG repeats in Npl3p. As Hmt1p stimulates dissociation of Tho2p from an Npl3p-mRNP complex, it could act to recycle these elongation and antitermination factors back to sites of ongoing transcription

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Vegetative Ecological Characteristics of Restored Reed (Phragmites australis) Wetlands in the Yellow River Delta, China

    Get PDF
    In this study, we compared ecological characteristics of wetland vegetation in a series of restoration projects that were carried out in the wetlands of Yellow River Delta. The investigated characteristics include plant composition structure, species diversity and community similarity in three kinds of Phragmites australis wetlands, i.e. restored P. australis wetlands (R1, R2, R3 and R4: restored in 2002, 2005, 2007 and 2009, respectively), natural P. australis wetland (N) and degraded P. australis wetland (D) to assess the process of wetlands restoration. The coverage of the R1 was 99%, which was similar to natural wetland. Among all studied wetlands, the highest and lowest stem density was observed in R1 and R2, respectively, Plant height and stem diameter show the same trend as N > R2 > R1 > R3 > D > R4. Species diversity of restored P. australis wetlands became closed to natural wetland. Both species richness and Shannon–Wiener index had similar tendency: increased first and then decreased with restored time. The highest species richness and species diversity were observed in R2, while the lowest values of those parameters were found in natural P. australis wetland. Similarity indexes between restored wetlands and natural wetland increased with the restoration time, but they were still less than 50%. The results indicate that the vegetation of P. australis wetlands has experienced a great improvement after several years’ restoration, and it is feasible to restored degraded P. australis wetlands by pouring fresh water into those wetlands in the Yellow River Delta. However, it is notable that costal degraded P. australis wetland in this region may take years to decades to reach the status of natural wetland

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Mutations that bypass tRNA binding activate the intrinsically defective kinase domain in GCN2

    No full text
    The protein kinase GCN2 is activated in amino acid-starved cells on binding of uncharged tRNA to a histidyl-tRNA synthetase (HisRS)-related domain. We isolated two point mutations in the protein kinase (PK) domain, R794G and F842L, that permit strong kinase activity in the absence of tRNA binding. These mutations also bypass the requirement for ribosome binding, dimerization, and association with the GCN1/GCN20 regulatory complex, suggesting that all of these functions facilitate tRNA binding to wild-type GCN2. While the isolated wild-type PK domain was completely inert, the mutant PK was highly active in vivo and in vitro. These results identify an inhibitory structure intrinsic to the PK domain that must be overcome on tRNA binding by interactions with a regulatory region, most likely the N terminus of the HisRS segment. As Arg 794 and Phe 842 are predicted to lie close to one another and to the active site, they may participate directly in misaligning active site residues. Autophosphorylation of the activation loop was stimulated by R794G and F842L, and the autophosphorylation sites remained critical for GCN2 function in the presence of these mutations. Our results imply a two-step activation mechanism involving distinct conformational changes in the PK domain
    corecore