53 research outputs found
Can a âstate of the artâ chemistry transport model simulate Amazonian tropospheric chemistry?
We present an evaluation of a nested high-resolution Goddard Earth Observing System (GEOS)-Chem chemistry transport model simulation of tropospheric chemistry over tropical South America. The model has been constrained with two isoprene emission inventories: (1) the canopy-scale Model of Emissions of Gases and Aerosols from Nature (MEGAN) and (2) a leaf-scale algorithm coupled to the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model, and the model has been run using two different chemical mechanisms that contain alternative treatments of isoprene photo-oxidation. Large differences of up to 100 Tg C yr^(â1) exist between the isoprene emissions predicted by each inventory, with MEGAN emissions generally higher. Based on our simulations we estimate that tropical South America (30â85°W, 14°Nâ25°S) contributes about 15â35% of total global isoprene emissions. We have quantified the model sensitivity to changes in isoprene emissions, chemistry, boundary layer mixing, and soil NO_x emissions using ground-based and airborne observations. We find GEOS-Chem has difficulty reproducing several observed chemical species; typically hydroxyl concentrations are underestimated, whilst mixing ratios of isoprene and its oxidation products are overestimated. The magnitude of model formaldehyde (HCHO) columns are most sensitive to the choice of chemical mechanism and isoprene emission inventory. We find GEOS-Chem exhibits a significant positive bias (10â100%) when compared with HCHO columns from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and Ozone Monitoring Instrument (OMI) for the study year 2006. Simulations that use the more detailed chemical mechanism and/or lowest isoprene emissions provide the best agreement to the satellite data, since they result in lower-HCHO columns
Volatile organic compound speciation above and within a Douglas Fir forest
Mixing ratios and fluxes of volatile organic compounds (VOCs) were measured by PTR-MS (and GC-MS) and virtual disjunct eddy covariance during a three-week field campaign in summer 2009 within and above a Douglas fir (Pseudotsuga menziesii) forest in Speulderbos, the Netherlands. Measurements included the first non-terpenoid species fluxes and mixing ratios for Douglas fir canopy. Above-canopy emissions of monoterpenes were comparable to previous studies of P. menziesii, with standard emission factors for the first and second halves of the campaign of 0.8 ± 0.4 and 0.8 ± 0.3 ”g gdw-1 h-1, and temperature coefficients of 0.19 ± 0.06 and 0.08 ± 0.05 °C-1, respectively. Isoprene standard emission factors for the two halves of the campaign were 0.09 ± 0.12 and 0.16 ± 0.18 ”g gdw-1 h-1. Fluxes of several non-terpenoid VOCs were significant, with maximum fluxes greater than has been measured for other coniferous species. α-Pinene was the dominant monoterpene within and above the canopy. Within canopy mixing ratios of individual species were generally greatest in early evening consistent with reduced vertical mixing and continued temperature-dependent emissions. Acetaldehyde, acetone and monoterpenes had elevated mixing ratios toward the bottom of the canopy (5-10 m) with assumed contribution from the large quantities of forest-floor leaf litter. MBO (2-methyl-3-buten-2-ol) and estragole had peak mixing ratios at the top of the canopy and are known to have coniferous sources. MVK + MACR (methyl vinyl ketone and methacrolein) also had highest mixing ratios at the top of the canopy consistent with formation from in-canopy oxidation of isoprene. The work highlights the importance of quantifying a wider variety of VOCs from biogenic sources than isoprene and monoterpenes
A Discussion of the Intrinsic Equations for Plane Curves, Curves in Space, and Surfaces
University of Minnesota Masters thesis. June 1917. 1 computer file (PDF); 52 pages
Statistical methods for students in education,
Mode of access: Internet
Statistical résumé of the Spearman two-factor theory,
Refers to the theory presented in the Appendix of C.E. Spearman's The abilities of man. of. Introd.Leaf 43 numbered in manuscript.Text mimeographed from type-written copy.Bibliography: leaf 42.Mode of access: Internet."Errata" slip mounted on t.-p
- âŠ