342 research outputs found

    High-dose carboplatin, thiotepa and cyclophosphamide (CTC) with peripheral blood stem cell support in the adjuvant therapy of high-risk breast cancer: a practical approach.

    Get PDF
    In 29 chemotherapy-naive patients with stage II-III breast cancer, peripheral blood stem cells (PBSCs) were mobilised following fluorouracil 500 mg m-2, epirubicin 90-120 mg m-2 and cyclophosphamide 500 mg m-2 (FEC) and granulocyte colony-stimulating factor (G-CSF; Filgrastim) 300 microgram s.c. daily. In all but one patient, mobilisation was successful, requiring three or fewer leucocytopheresis sessions in 26 patients; 28 patients subsequently underwent high-dose chemotherapy consisting of carboplatin 1600 mg m-2, thiotepa 480 mg m-2 and cyclophosphamide 6 g m-2 (CTC) followed by PBSC transplantation. Haemopoietic engraftment was rapid with a median time to neutrophils of 500 x 10(6) l(-1) of 9 days (range 8-10) in patients who received G-CSF after PBSC-transplantation; platelet transfusion independence was reached within a median of 10 days (range 7-16). Neutropenic fever occurred in 96% of patients. Gastrointestinal toxicity was substantial but reversible. Renal, neural or ototoxicity was not observed. Complications related to the central venous catheter were encountered in 64% of patients, with major vein thrombosis occurring in 18%. High-dose CTC-chemotherapy with PBSC-transplantation, harvested after mobilisation with FEC and G-CSF, is reasonably well tolerated without life-threatening toxicity and is a suitable high-dose strategy for the adjuvant treatment of breast cancer

    Quantitative Gadolinium-Free Cardiac Fibrosis Imaging in End Stage Renal Disease Patients Reveals a Longitudinal Correlation with Structural and Functional Decline

    Get PDF
    Patients with end stage renal disease (ESRD) suffer high mortality from arrhythmias linked to fibrosis, but are contraindicated to late gadolinium enhancement magnetic resonance imaging (MRI). We present a quantitative method for gadolinium-free cardiac fibrosis imaging using magnetization transfer (MT) weighted MRI, and probe correlations with widely used surrogate markers including cardiac structure and contractile function in patients with ESRD. In a sub-group of patients who returned for follow-up imaging after one year, we examine the correlation between changes in fibrosis and ventricular structure/function. Quantification of changes in MT revealed significantly greater fibrotic burden in patients with ESRD compared to a healthy age matched control cohort. Ventricular mechanics, including circumferential strain and diastolic strain rate were unchanged in patients with ESRD. No correlation was observed between fibrotic burden and concomitant measures of either circumferential or longitudinal strains or strain rates. However, among patients who returned for follow up examination a strong correlation existed between initial fibrotic burden and subsequent loss of contractile function. Gadolinium-free myocardial fibrosis imaging in patients with ESRD revealed a complex and longitudinal, not contemporary, association between fibrosis and ventricular contractile function

    Исследование остаточных углеводородов в ходе деструкции гептана углеводородокисляющими микроорганизмами рода Pseudomonas и Rodococcus

    Get PDF
    Molding of micro structures by injection molding leads to special requirements for the molds e.g. regarding wear resistance and low release forces of the molded components. At the same time it is not allowed to affect the replication precision. Physical vapor deposition (PVD) is one of the promising technologies for applying coatings with adapted properties like high hardness, low roughness, low Young's modulus and less adhesion to the melt of polymers. Physical vapor deposition technology allows the deposition of thin films on micro structures. Therefore, the influence of these PVD layers on the contour accuracy of the replicated micro structures has to be investigated. For this purpose injection mold inserts were laser structured with micro structures of different sizes and afterwards coated with two different coatings, which were deposited by a magnetron sputter ion plating PVD technology. After deposition, the coatings were analyzed by techniques regarding hardness, Young's modulus and morphology. The geometries of the micro structures were analyzed by scanning electron microscopy before and after coating. Afterwards, the coated mold inserts were used for injection molding experiments. During the injection molding process, a conventional and a variothermal temperature control of the molds were used. The molded parts were analyzed regarding roughness, structure height and structure width by means of laser microscopy

    Развитие бизнес-процессов статистического управления качеством на Юргинском машзаводе

    Get PDF
    Micro-structured and thus functionalized surfaces offer high potentials for new approaches in processing techniques and product design. However, for mass production purposes quite a few challenges regarding the manufacturing of these surfaces have to be overcome. For the fast and economic production of large quantities of structured polymer films the extrusion embossing process is suitable. For embossing microstructures there are special requirements on temperature control because of the double function of the embossing roll. On the one hand the roll is used as an embossing roll with a high surface temperature to improve the embossing accuracy. On the other hand it is used as a cooling roll with a low surface temperature. Only by using variothermal heating systems these contradictory demands on the temperature control can be met. In order to achieve a high quality of the produced micro-structured films an integrative analysis and optimization of the entire process chain is required. This includes the manufacturing of suitable embossing rolls, the development of coating systems and the adaption of the extrusion process. This paper deals with the entire process chain for functionalized, super hydrophobic plastic parts with contact angles up to 165°. Therefore, conelike surface structures, mimicking the structure of lotus leaves, are replicated. Functionalized parts are produced in the injection molding as well as in the extrusion process; however, this paper focuses on the process chain of the extrusion process

    Gigahertz (GHz) hard x-ray imaging using fast scintillators

    Get PDF
    Gigahertz (GHz) imaging technology will be needed at high-luminosity X-ray and charged particle sources. It is plausible to combine fast scintillators with the latest picosecond detectors and GHz electronics for multi-frame hard Xray imaging and achieve an inter-frame time of less than 10 ns. The time responses and light yield of LYSO, LaBr_3, BaF_2 and ZnO are measured using an MCP-PMT detector. Zinc Oxide (ZnO) is an attractive material for fast hard X-ray imaging based on GEANT4 simulations and previous studies, but the measured light yield from the samples is much lower than expected

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam
    corecore