1,063 research outputs found
Unravelling the origin of large-scale magnetic fields in galaxy clusters and beyond through Faraday Rotation Measures with the SKA
We investigate the possibility for the SKA to detect and study the magnetic
fields in galaxy clusters and in the less dense environments surrounding them
using Faraday Rotation Measures. To this end, we produce 3-dimensional magnetic
field models for galaxy clusters of different masses and in different stages of
their evolution, and derive mock rotation measure observations of background
radiogalaxies. According to our results, already in phase I, we will be able to
infer the magnetic field properties in galaxy clusters as a function of the
cluster mass, down to solar-masses. Moreover, using cosmological
simulations to model the gas density, we have computed the expected rotation
measure through shock-fronts that occur in the intra-cluster medium during
cluster mergers. The enhancement in the rotation measure due to the density
jump will permit to constraint the magnetic field strength and structure after
the shock passage. SKA observations of polarised sources located behind galaxy
clusters will answer several questions about the magnetic field strength and
structure in galaxy clusters, and its evolution with cosmic time.Comment: 9 pages, 4 Figures, to appear as part of 'Cosmic Magnetism' in
Proceedings 'Advancing Astrophysics with the SKA (AASKA14)', PoS(AASKA14
Cluster magnetic fields through the study of polarized radio halos in the SKA era
Galaxy clusters are unique laboratories to investigate turbulent fluid
motions and large scale magnetic fields. Synchrotron radio halos at the center
of merging galaxy clusters provide the most spectacular and direct evidence of
the presence of relativistic particles and magnetic fields associated with the
intracluster medium. The study of polarized emission from radio halos is
extremely important to constrain the properties of intracluster magnetic fields
and the physics of the acceleration and transport of the relativistic
particles. However, detecting this polarized signal is a very hard task with
the current radio facilities.We use cosmological magneto-hydrodynamical
simulations to predict the expected polarized surface brightness of radio halos
at 1.4 GHz. We compare these expectations with the sensitivity and the
resolution reachable with the SKA1. This allows us to evaluate the potential
for studying intracluster magnetic fields in the surveys planned for SKA1.Comment: 11 pages, 4 figures; to appear as part of 'Cosmic Magnetism' in
Proceedings 'Advancing Astrophysics with the SKA (AASKA14)', PoS(AASKA14)10
Very High Angular Resolution Science with the Square Kilometre Array
Preliminary specifications for the Square Kilometre Array (SKA) call for 25%
of the total collecting area of the dish array to be located at distances
greater than 180 km from the core, with a maximum baseline of at least 3000 km.
The array will provide angular resolution ~ 40 - 2 mas at 0.5 - 10 GHz with
image sensitivity reaching < 50 nJy/beam in an 8 hour integration with 500 MHz
bandwidth. Given these specifications, the high angular resolution component of
the SKA will be capable of detecting brightness temperatures < 200 K with
milliarcsecond-scale angular resolution. The aim of this article is to bring
together in one place a discussion of the broad range of new and important high
angular resolution science that will be enabled by the SKA, and in doing so,
address the merits of long baselines as part of the SKA. We highlight the fact
that high angular resolution requiring baselines greater than 1000 km provides
a rich science case with projects from many areas of astrophysics, including
important contributions to key SKA science.Comment: 13 pages, 6 figure
The emission and scintillation properties of RRAT J2325-0530 at 154 MHz and 1.4 GHz
Rotating Radio Transients (RRATs) represent a relatively new class of pulsar,
primarily characterised by their sporadic bursting emission of single pulses on
time scales of minutes to hours. In addition to the difficulty involved in
detecting these objects, low-frequency (300 MHz) observations of RRATs are
sparse, which makes understanding their broadband emission properties in the
context of the normal pulsar population problematic. Here, we present the
simultaneous detection of RRAT J2325-0530 using the Murchison Widefield Array
(154 MHz) and Parkes radio telescope (1.4 GHz). On a single-pulse basis, we
produce the first polarimetric profile of this pulsar, measure the spectral
index (), pulse energy distributions, and present the pulse
rates in the context of detections in previous epochs. We find that the
distribution of time between subsequent pulses is consistent with a Poisson
process and find no evidence of clustering over the 1.5 hr observations.
Finally, we are able to quantify the scintillation properties of RRAT
J2325-0530 at 1.4 GHz, where the single pulses are modulated substantially
across the observing bandwidth, and show that this characterisation is feasible
even with irregular time sampling as a consequence of the sporadic emission
behaviour.Comment: 18 pages, 8 figures, 5 tables, accepted for publication in PAS
High Galactic latitude polarized emission at 1.4 GHz and implications for cosmic microwave background observations
We analyse the polarized emission at 1.4 GHz in a 3x3 deg^2 area at high
Galactic latitude (b ~ -40deg). The region, centred in (RA=5h, Dec=-49deg), was
observed with the Australia Telescope Compact Array radio-interferometer, whose
3-30 arcmin angular sensitivity range allows the study of scales appropriate
for CMB Polarization (CMBP) investigations. The angular behavior of the diffuse
emission is analysed through the E- and B-mode power spectra. These follow a
power law with slopes \beta_E = -1.97 \pm 0.08 and
\beta_B = -1.98 \pm 0.07. The emission is found to be about a factor 25 fainter
than in Galactic plane regions. The comparison of the power spectra with other
surveys indicates that this area is intermediate between strong and negligible
Faraday rotation effects. A similar conclusion can be reached by analysing both
the frequency and Galactic latitude behaviors of the diffuse Galactic emission
of the 408-1411 MHz Leiden survey data. We present an analysis of the Faraday
rotation effects on the polarized power spectra, and find that the observed
power spectra can be enhanced by a transfer of power from large to small
angular scales. The extrapolation of the spectra to 32 and 90GHz of the CMB
window suggests that Galactic synchrotron emission leaves the CMBP E-mode
uncontaminated at 32GHz. The level of the contamination at 90GHz is expected to
be more than 4 orders of magnitude below the CMBP spectrum. Extrapolating to
the relevant angular scales, this region also appears adequate for
investigation of the CMBP B-modes for models with tensor/scalar fluctuation
power ratio T/S>0.01. We also identify polarized point sources in the field,
providing a 9 object list which is complete down to the polarized flux limit of
S^p_lim = 2 mJy.Comment: 13 pages, 11 figures, accepted for publication in MNRA
The Murchison Widefield Array Transients Survey (MWATS). A search for low frequency variability in a bright Southern hemisphere sample
We report on a search for low-frequency radio variability in 944 bright (>
4Jy at 154 MHz) unresolved, extragalactic radio sources monitored monthly for
several years with the Murchison Widefield Array. In the majority of sources we
find very low levels of variability with typical modulation indices < 5%. We
detect 15 candidate low frequency variables that show significant long term
variability (>2.8 years) with time-averaged modulation indices M = 3.1 - 7.1%.
With 7/15 of these variable sources having peaked spectral energy
distributions, and only 5.7% of the overall sample having peaked spectra, we
find an increase in the prevalence of variability in this spectral class. We
conclude that the variability seen in this survey is most probably a
consequence of refractive interstellar scintillation and that these objects
must have the majority of their flux density contained within angular diameters
less than 50 milli-arcsec (which we support with multi-wavelength data). At 154
MHz we demonstrate that interstellar scintillation time-scales become long
(~decades) and have low modulation indices, whilst synchrotron driven
variability can only produce dynamic changes on time-scales of hundreds of
years, with flux density changes less than one milli-jansky (without
relativistic boosting). From this work we infer that the low frequency
extra-galactic southern sky, as seen by SKA-Low, will be non-variable on
time-scales shorter than one year.Comment: 19 pages, 11 figure
Murchison Widefield Array and XMM-Newton observations of the Galactic supernova remnant G5.9+3.1
In this paper we discuss the radio continuum and X-ray properties of the
so-far poorly studied Galactic supernova remnant (SNR) G5.9+3.1. We present the
radio spectral energy distribution (SED) of the Galactic SNR G5.9+3.1 obtained
with the Murchison Widefield Array (MWA). Combining these new observations with
the surveys at other radio continuum frequencies, we discuss the integrated
radio continuum spectrum of this particular remnant. We have also analyzed an
archival XMM-Newton observation, which represents the first detection of X-ray
emission from this remnant. The SNR SED is very well explained by a simple
power-law relation. The synchrotron radio spectral index of G5.9+3.1, is
estimated to be 0.420.03 and the integrated flux density at 1GHz to be
around 2.7Jy. Furthermore, we propose that the identified point radio source,
located centrally inside the SNR shell, is most probably a compact remnant of
the supernova explosion. The shell-like X-ray morphology of G5.9+3.1 as
revealed by XMM-Newton broadly matches the spatial distribution of the radio
emission, where the radio-bright eastern and western rims are also readily
detected in the X-ray while the radio-weak northern and southern rims are weak
or absent in the X-ray. Extracted MOS1+MOS2+PN spectra from the whole SNR as
well as the north, east, and west rims of the SNR are fit successfully with an
optically thin thermal plasma model in collisional ionization equilibrium with
a column density N_H~0.80x cm and fitted temperatures spanning
the range kT~0.14-0.23keV for all of the regions. The derived electron number
densities n_e for the whole SNR and the rims are also roughly comparable
(ranging from ~ cm to ~ cm, where f
is the volume filling factor). We also estimate the swept-up mass of the X-ray
emitting plasma associated with G5.9+3.1 to be ~.Comment: Accepted for publication in A&
Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array
15 pages, 11 figures. Accepted for publication in PASA. © Astronomical Society of Australia 2017The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science program, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programs for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope's primary beam. Recent results from the MWA GaLactic Extragalactic All-sky MWA (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10-20 % in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA's primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 x 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200 - 231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.Peer reviewedFinal Accepted Versio
The Spectral Energy Distribution of Powerful Starburst Galaxies I : Modelling the Radio Continuum
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We have acquired radio-continuum data between 70MHz and 48 GHz for a sample of 19 southern starburst galaxies at moderate redshifts (0.067 < z < 0.227) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework, we find the radio continuum is rarely characterized well by a single power law, instead often exhibiting lowfrequency turnovers below 500 MHz, steepening at mid to high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 and 500MHz the radio continuum at low frequency (v < 200 MHz) could be overestimated by upwards of a factor of 12 if a simple power-law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be α = -1.06, which is steeper than the canonical value of -0.8 for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.Peer reviewe
The Spectral Energy Distribution of Powerful Starburst Galaxies I: Modelling the Radio Continuum
We have acquired radio continuum data between 70\,MHz and 48\,GHz for a
sample of 19 southern starburst galaxies at moderate redshifts () with the aim of separating synchrotron and free-free emission
components. Using a Bayesian framework we find the radio continuum is rarely
characterised well by a single power law, instead often exhibiting low
frequency turnovers below 500\,MHz, steepening at mid-to-high frequencies, and
a flattening at high frequencies where free-free emission begins to dominate
over the synchrotron emission. These higher order curvature components may be
attributed to free-free absorption across multiple regions of star formation
with varying optical depths. The decomposed synchrotron and free-free emission
components in our sample of galaxies form strong correlations with the
total-infrared bolometric luminosities. Finally, we find that without
accounting for free-free absorption with turnovers between 90 to 500\,MHz the
radio-continuum at low frequency (\,MHz) could be overestimated by
upwards of a factor of twelve if a simple power law extrapolation is used from
higher frequencies. The mean synchrotron spectral index of our sample is
constrained to be , which is steeper then the canonical value of
for normal galaxies. We suggest this may be caused by an intrinsically
steeper cosmic ray distribution
- …