183 research outputs found

    Evidence of strong small-scale population structure in the Antarctic freshwater copepod Boeckella poppei in lakes on Signy Island, South Orkney Islands

    Get PDF
    Environmental conditions were particularly severe during the Last Glacial Maximum, altering the distribution of the Southern Hemisphere biota, particularly at higher latitudes. The copepod Boeckella poppei is the only macroscopic continental invertebrate species known to be distributed today across the three main biogeographic regions in Antarctica as well as in southern South America. Signy Island (South Orkney Islands) is a unique location for the study of Antarctic freshwater ecosystems due to its location and geographic isolation; it contains 17 lakes in several low altitude catchments. We conducted phylogeographic and demographic analyses using the cox1 gene on 84 individuals of B. poppei from seven lakes across Signy Island. We recorded low levels of genetic diversity and a strong genetic differentiation signal between the eastern and western valleys within the island. Phylogeographic structure and demographic inference analyses suggested at least one asymmetrical dispersal event from west to east. Demographic inference detected a strong signal of population growth during the deglaciation process, which may have followed either (1) a strong genetic bottleneck due to a reduction in population size during the last glacial period, or (2) a founder effect associated with postglacial recolonization of Signy Island from elsewhere. The genetic architecture of this island's populations of B. poppei shows that historical events, rather than continuous dispersal events, likely played a major role in the species' current distribution. Finally, our study considers possible mechanisms for dispersal and colonization success of the most dominant species in the Antarctic freshwater community

    Evaluación del riesgo de inundación a múltiples componentes en la costa del Maresme

    Get PDF
    The coast is one of the areas most affected by natural hazards, with floods being the most frequent and significant of these in terms of their induced impacts, so any management scheme requires their evaluation. In coastal areas, flooding is a hazard associated with different processes acting at different scales: coastal storms, flash floods and sea level rise (SLR). To address the problem as a whole, this study presents a methodology to undertake a preliminary integrated risk assessment of the magnitude of each flood component, taking into account their scope (extension of the affected area) and their temporal scale. The risk is quantified using specific indicators to assess the hazard magnitude (for each component) and the consequences. This allows for a robust comparison of the spatial risk distribution along the coast in order to identify both the most at-risk areas and the most influential risk components. This methodology is applied to a stretch of coastline (Maresme, Catalonia) representative of the Spanish Mediterranean coast. The results obtained characterise this coastline as an area with a relatively low overall risk, although some hotspots are identified as having high-risk values. Resumen: La costa es una de las zonas más sometidas a riesgos naturales, siendo la inundación uno de los más frecuentes e importantes en términos de daños inducidos, por lo que cualquier esquema de gestión requiere evaluación. La inundación en zonas costeras es una amenaza natural asociada a diferentes procesos que actúan a distintas escalas: tormentas costeras, riadas y subida del nivel del mar (SNM). Para abarcar la totalidad del problema, este trabajo propone una metodología para la evaluación preliminar del riesgo integrado de inundación costera a una escala regional que permite evaluar la magnitud de cada componente teniendo en cuenta su alcance (extensión de la zona afectada) y su escala temporal. El riesgo se cuantifica en función de unos indicadores específicos que valoran la magnitud de la amenaza para cada componente y las consecuencias. Esto permite comparar robustamente la distribución espacial del riesgo a lo largo de la costa, para identificar tanto zonas de mayor riesgo como las componentes que más contribuyen al mismo. Aplicamos esta metodología a un tramo de costa característica del Mediterráneo español (Maresme, Cataluña). Los resultados permiten caracterizar esta costa como un área con un riesgo global relativamente bajo, pero algunos puntos singulares con riesgo alto

    Structural and functional responses of macroinvertebrate assemblages to long‐term flow variability at perennial and nonperennial sites

    Get PDF
    Temporary streams constitute a significant proportion of rivers globally and are common in wet, cool, temperate regions. These heterogeneous ecosystems harbour high biodiversity associated with the dynamic turnover of taxa. Despite flow permanence being widely recognised as an important environmental control, few studies have characterised biotic responses to long‐term hydrological variability in temporary streams. We examined taxonomic and functional macroinvertebrate communities of perennial and nonperennial river reaches over a 26‐year period. Flow permanence resulted in spatial variation in taxonomic and functional macroinvertebrate communities. Nonperennial river reaches, which were characterised by dynamic habitat provision (lotic, lentic, and dry states) over the study period, supported more heterogeneous communities than perennial river reaches. Hydrological variables, in particular wetted width, water depth, and zero‐flow states, were instrumental in structuring taxonomic and functional communities, although the importance of substrate conditions increased in autumn. Hydrological conditions resulted in separation of perennial and nonperennial taxonomic communities regardless of season, whereas functional communities differed only in spring. Our results emphasise that understanding of community responses to hydrological variability is enhanced by analyses that concurrently explore taxonomic and functional responses to long‐term intraannual and interannual hydrological variability. Moreover, functional responses represent a robust method to test ecological responses to hydrological drivers. Further research that builds on our work is needed to inform the protection of both perennial and nonperennial streams as they adapt to ongoing environmental change

    Prospective validation of a checklist to predict short-term death in older patients after emergency department admission in Australia and Ireland

    Get PDF
    Abstract Background Emergency departments (EDs) are pressured environment where patients with supportive and palliative care needs may not be identified. We aimed to test the predictive ability of the CriSTAL (Criteria for Screening and Triaging to Appropriate aLternative care) checklist to flag patients at risk of death within 3 months who may benefit from timely end-of-life discussions. Methods Prospective cohorts of >65-year-old patients admitted for at least one night via EDs in five Australian hospitals and one Irish hospital. Purpose-trained nurses and medical students screened for frailty using two instruments concurrently and completed the other risk factors on the CriSTAL tool at admission. Postdischarge telephone follow-up was used to determine survival status. Logistic regression and bootstrapping techniques were used to test the predictive accuracy of CriSTAL for death within 90 days of admission as primary outcome. Predictability of in-hospital death was the secondary outcome. Results A total of 1,182 patients, with median age 76 to 80 years (IRE-AUS), were included. The deceased had significantly higher mean CriSTAL with Australian mean of 8.1 (95% confidence interval [CI] = 7.7–8.6) versus 5.7 (95% CI = 5.1–6.2) and Irish mean of 7.7 (95% CI = 6.9–8.5) versus 5.7 (95% CI = 5.1–6.2). The model with Fried frailty score was optimal for the derivation (Australian) cohort but prediction with the Clinical Frailty Scale (CFS) was also good (areas under the receiver-operating characteristic [AUROC] = 0.825 and 0.81, respectively). Values for the validation (Irish) cohort were AUROC = 0.70 with Fried and 0.77 using CFS. A minimum of five of 29 variables were sufficient for accurate prediction, and a cut point of 7+ or 6+ depending on the cohort was strongly indicative of risk of death. The most significant independent predictor of short-term death in both cohorts was frailty, carrying a twofold risk of death. CriSTAL's accuracy for in-hospital death prediction was also good (AUROC = 0.795 and 0.81 in Australia and Ireland, respectively), with high specificity and negative predictive values. Conclusions The modified CriSTAL tool (with CFS instead of Fried's frailty instrument) had good discriminant power to improve certainty of short-term mortality prediction in both health systems. The predictive ability of models is anticipated to help clinicians gain confidence in initiating earlier end-of-life discussions. The practicalities of embedding screening for risk of death in routine practice warrant further investigation

    A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera)

    Get PDF
    Two separated levels of functionality are identified in the nanostructure which covers the wings of the grey cicada Cicada orni\textit{Cicada orni} (Hemiptera). The upper level is responsible for superhydrophobic character of the wing while the lower level enhances its anti-reflective behavior. Extensive wetting experiments with various chemical species and optical measurements were performed in order to assess the bi-functionality. Scanning electron microscopy imaging was used to identify the nanostructure morphology. Numerical optical simulations and analytical wetting models were used to prove the roles of both levels of the nanostructure. In addition, the complex refractive index of the chitinous material of the wing was determined from measurements.Comment: 8 pages, 10 figures, final version published in Journal of Applied Physic

    A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)

    Get PDF
    Coastal regions are the areas most threatened by natural hazards, with floods being the most frequent and significant threat in terms of their induced impacts, and therefore, any management scheme requires their evaluation. In coastal areas, flooding is a hazard associated with various processes acting at different scales: coastal storms, flash floods, and sea level rise (SLR). In order to address the problem as a whole, this study presents a methodology to undertake a preliminary integrated risk assessment that determines the magnitude of the different flood processes (flash flood, marine storm, SLR) and their associated consequences, taking into account their temporal and spatial scales. The risk is quantified using specific indicators to assess the magnitude of the hazard (for each component) and the consequences in a common scale. This allows for a robust comparison of the spatial risk distribution along the coast in order to identify both the areas at greatest risk and the risk components that have the greatest impact. This methodology is applied on the Maresme coast (NW Mediterranean, Spain), which can be considered representative of developed areas of the Spanish Mediterranean coast. The results obtained characterise this coastline as an area of relatively low overall risk, although some hot spots have been identified with high-risk values, with flash flooding being the principal risk process

    Exploring the Trypanosoma brucei Hsp83 Potential as a Target for Structure Guided Drug Design

    Get PDF
    Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp), while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF). Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC) and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite

    Rethinking data‐driven decision support in flood risk management for a big data age

    Get PDF
    Decision‐making in flood risk management is increasingly dependent on access to data, with the availability of data increasing dramatically in recent years. We are therefore moving towards an era of big data, with the added challenges that, in this area, data sources are highly heterogeneous, at a variety of scales, and include a mix of structured and unstructured data. The key requirement is therefore one of integration and subsequent analyses of this complex web of data. This paper examines the potential of a data‐driven approach to support decision‐making in flood risk management, with the goal of investigating a suitable software architecture and associated set of techniques to support a more data‐centric approach. The key contribution of the paper is a cloud‐based data hypercube that achieves the desired level of integration of highly complex data. This hypercube builds on innovations in cloud services for data storage, semantic enrichment and querying, and also features the use of notebook technologies to support open and collaborative scenario analyses in support of decision making. The paper also highlights the success of our agile methodology in weaving together cross‐disciplinary perspectives and in engaging a wide range of stakeholders in exploring possible technological futures for flood risk management

    The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae).

    Get PDF
    A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient
    corecore