49 research outputs found

    The reconstruction of Ni and Rh (001) surfaces upon Carbon, Nitrogen, or Oxygen adsorption

    Full text link
    Nickel and Rhodium (001) surfaces display a similar - as from STM images - clock reconstruction when half a monolayer of C/Ni, N/Ni or O/Rh is adsorbed; no reconstruction is observed instead for O/Ni. Adsorbate atoms sit at the center of the black squares of a chess-board, c(2×2)c(2\times 2), pattern and two different reconstructions are actually compatible with the observed STM images - showing a (2×2)p4g(2\times 2)p4g pattern - according to whether a rotation of the black or white squares occurs. We report on a first - principles study of the structure of X/Ni(001) and X/Rh(001) surfaces (X=C,N,O) at half a monolayer coverage, performed using density-functional theory. Our findings are in agreement with all available experimental information and shed new light on the mechanisms responsible for the reconstructions. We show that the same substrate may display different reconstructions - or no reconstruction - upon adsorption of different atomic species, depending on the relative importance of the chemical and steric factors which determine the reconstruction.Comment: 18 pages, 5 figure

    Identification and Analysis of a New Hepadnavirus in White Storks

    Get PDF
    AbstractWe identified, cloned, and functionally characterized a new avian hepadnavirus infecting storks (STHBV). STHBV has the largest DNA genome of all avian hepadnaviruses and, based on sequence and phylogenetic analysis, is most closely related to, but distinct from, heron hepatitis B virus (HHBV). Unique for STHBV among the other avian hepadnaviruses is a potential HNF1 binding site in the preS promoter. In common only with HHBV, STHBV has a myristylation signal on the S and not the preS protein, two C terminally located glycosylation sites on the precore/core proteins and lacks the phosphorylation site essential for the transcriptional transactivation activity of duck-HBV preS protein. The cloned STHBV genomes were competent in gene expression, replication, and viral particle secretion. STHBV infected primary duck hepatocytes very inefficiently suggesting a restricted host range, similar to other hepadnaviruses. This discovery of stork infections unravels novel evolutionary aspects of hepadnaviruses and provides new opportunities for hepadnavirus research

    Two-spinon dynamic structure factor of the one-dimensional S=1/2 Heisenberg antiferromagnet

    Get PDF
    The exact expression derived by Bougourzi, Couture, and Kacir for the 2-spinon contribution to the dynamic spin structure factor Szz(q,ω)S_{zz}(q,\omega) of he one-dimensional SS=1/2 Heisenberg antiferromagnet at T=0T=0 is evaluated for direct comparison with finite-chain transition rates (N28N\leq 28) and an approximate analytical result previously inferred from finite-NN data, sum rules, and Bethe-ansatz calculations. The 2-spinon excitations account for 72.89% of the total intensity in Szz(q,ω)S_{zz}(q,\omega). The singularity structure of the exact result is determined analytically and its spectral-weight distribution evaluated numerically over the entire range of the 2-spinon continuum. The leading singularities of the frequency-dependent spin autocorrelation function, static spin structure factor, and qq-dependent susceptibility are determined via sum rules.Comment: 6 pages (RevTex) and 5 figures (Postscript

    Event-by-Event Fluctuations in Heavy Ion Collisions and the QCD Critical Point

    Get PDF
    The event-by-event fluctuations of suitably chosen observables in heavy ion collisions at SPS, RHIC and LHC can tell us about the thermodynamic properties of the hadronic system at freeze-out. By studying these fluctuations as a function of varying control parameters, it is possible to learn much about the phase diagram of QCD. As a timely example, we stress the methods by which present experiments at the CERN SPS can locate the second-order critical endpoint of the first-order transition between quark-gluon plasma and hadron matter. Those event-by-event signatures which are characteristic of freeze-out in the vicinity of the critical point will exhibit nonmonotonic dependence on control parameters. We focus on observables constructed from the multiplicity and transverse momenta of charged pions. We first consider how the event-by-event fluctuations of such observables are affected by Bose-Einstein correlations, by resonances which decay after freeze-out and by fluctuations in the transverse flow velocity. We compare our thermodynamic predictions for such noncritical event-by-event fluctuations with NA49 data, finding broad agreement. We then focus on effects due to thermal contact between the observed pions and a heat bath with a given (possibly singular) specific heat, and due to the direct coupling between the critical fluctuations of the sigma field and the observed pions. We also discuss the effect of the pions produced in the decay of sigma particles just above threshold after freeze-out on the inclusive pion spectrum and on multiplicity fluctuations. We estimate the size of these nonmonotonic effects which appear near the critical point, including restrictions imposed by finite size and finite time, and conclude that they should be easily observable.Comment: 58 pages, 2 figures; to appear in Phys. Rev.

    Quantum-Phase Transitions of Interacting Bosons and the Supersolid Phase

    Full text link
    We investigate the properties of strongly interacting bosons in two dimensions at zero temperature using mean-field theory, a variational Ansatz for the ground state wave function, and Monte Carlo methods. With on-site and short-range interactions a rich phase diagram is obtained. Apart from the homogeneous superfluid and Mott-insulating phases, inhomogeneous charge-density wave phases appear, that are stabilized by the finite-range interaction. Furthermore, our analysis demonstrates the existence of a supersolid phase, in which both long-range order (related to the charge-density wave) and off-diagonal long-range order coexist. We also obtain the critical exponents for the various phase transitions.Comment: RevTex, 20 pages, 10 PostScript figures include

    Correlation Entropy of an Interacting Quantum Field and H-theorem for the O(N) Model

    Full text link
    Following the paradigm of Boltzmann-BBGKY we propose a correlation entropy (of the nth order) for an interacting quantum field, obtained by `slaving' (truncation with causal factorization) of the higher (n+1 th) order correlation functions in the Schwinger-Dyson system of equations. This renders an otherwise closed system effectively open where dissipation arises. The concept of correlation entropy is useful for addressing issues related to thermalization. As a small yet important step in that direction we prove an H-theorem for the correlation entropy of a quantum mechanical O(N) model with a Closed Time Path Two Particle Irreducible Effective Action at the level of Next-to-Leading-Order large N approximation. This model may be regarded as a field theory in 00 space dimensions.Comment: 22 page

    Phase transitions in quantum chromodynamics

    Get PDF
    The current understanding of finite temperature phase transitions in QCD is reviewed. A critical discussion of refined phase transition criteria in numerical lattice simulations and of analytical tools going beyond the mean-field level in effective continuum models for QCD is presented. Theoretical predictions about the order of the transitions are compared with possible experimental manifestations in heavy-ion collisions. Various places in phenomenological descriptions are pointed out, where more reliable data for QCD's equation of state would help in selecting the most realistic scenario among those proposed. Unanswered questions are raised about the relevance of calculations which assume thermodynamic equilibrium. Promising new approaches to implement nonequilibrium aspects in the thermodynamics of heavy-ion collisions are described.Comment: 156 pages, RevTex. Tables II,VIII,IX and Fig.s 1-38 are not included as postscript files. I would like to ask the requestors to copy the missing tables and figures from the corresponding journal-referenc

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore