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Two-spinon dynamic structure factor of the one-dimensionals=3; Heisenberg antiferromagnet

Michael Karbach and Gerhard Nier
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

A. Hamid Bougourzi
Institute of Theoretical Physics, SUNY at Stony Brook, Stony Brook, New York 11794

Andreas Fledderjohann and Karl-Heinz tiar
Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
(Received 11 June 1996; revised manuscript received 20 Novembey 1996

The exact expression derived by Bougourzi, Couture, and Kacir for the two-spinon contribution to the
dynamic spin structure fact@(q,») of the one-dimensiona=1/2 Heisenberg antiferromagnet B0 is
evaluated for direct comparison with finite-chain transition raiés28) and an approximate analytical result
previously inferred from finiteN data, sum rules, and Bethe ansatz calculations. The two-spinon excitations
account for 72.89% of the total intensity 8{q, ). The singularity structure of the exact result is determined
analytically and its spectral-weight distribution evaluated numerically over the entire range of the two-spinon
continuum. The leading singularities of the frequency-dependent spin autocorrelation function, static spin
structure factor, and) dependent susceptibility are determined via sum rules. The impact of the non-two-
spinon excitations on the integrated intensity, the susceptibility, the frequency moments, and the Euclidian time
representation 08(q,w) is studied on the basis of finite-size d4t80163-182@07)00517-1

. INTRODUCTION 0=<qg<w,0<q,,<q, for N—o. In the (,w) plane they
form a two-parameter continuum bounded by the branches
Notwithstanding the fact that Bethdéound the key that

solves the one-dimensiondlD) s=1/2 Heisenberg model, T .q
wL(Q)ZESInq, wu(q)=w8|n§. (1.4
N
H=J> S-S.1, (1.1)  These excitations were later namieb-spinonstates. Their
=1

density of stategrescaled by 2/N) is’

as early as 1931, the emergence of explicit results for various
physical quantities (ground-state enerdy, excitation D(q,0)= O(0—w (4)0(wy(q)— )
spectrun® magnetization curve, susceptibility,thermo- ' Vol (0)— o?
dynamics) was slow at first and then faster since around
1960. Interest in this model began to spread far and wide TheT=0 dynamic spin structure factor for a finite system
when the first compounds with quasi-1D magnetic propertiesvith evenN and periodic boundary conditions can be written
were synthesized and investigated experimentally. in the form

However, the dynamics of the 1D Heisenberg antiferro-
magnet §>0) has remained elusive to any rigorous ap-
proach during all those years. An exact result for the dy- S(q,w):27r§;, My (= w)),
namic spin structure factor

1.9

(1.6

where M, =[(G|SiI\)|? with S{=N""25,€'9's} are the

1 . too transition rates between the singled;&0) ground state
S(q,w)= NIE el dte*{S(1S ), (1.2 |G) and the triplet 6;=1) stateg)) with finite-N excitation
" energiesw, . Among them are thé&N(N+2)/8 two-spinon

in particular, would have been of great value for the inter-€Xcitations, which contribute most of the spectral weight.
pretation of a host of experimental d4ta. The finite-chain analysis of Ref. 7 suggested that the

namics resulted from the observatfothat almost all the 1he consequence could be that the exact two-spinon part of

spectral weight inS(q,w) is carried by a special class of S(q,w) is expressible, foN—, as a product
Bethe ansatz solutions with excitation energigsunits of

J henceforth S$?(q,0)=M(q,0)D(q,0), 1.7
with a smooth transition-rate functioM(q,w), toward
_ o8 (9 Om which the scaled finitd¥ transition rates converge. This sce-
om(9)= wsmzcos(z 2 ) (1.3 nario is indeed realized in the relat¥X model® where the

0163-1829/97/58.8)/125108)/$10.00 55 12510 © 1997 The American Physical Society



55 TWO-SPINON DYNAMIC STRUCTURE FACTOR OF TH. .. 12 511

two-spinon density of states is given by E#.5 with modi-
fied spectral boundaries, and the transition-rate function is a
constant.

II. TWO-SPINON TRANSITION RATES

In the Heisenberg modélL.1), the finiteN data for the
two-spinon matrix elements indicate thislt(q, ) diverges
at o= w_(q) and vanishes ab=w(q). In Ref. 7 the ex-

pression
[wf(a)—w? ’
M (@ @)= et h et 2.1

for the two-spinon transition-rate function was proposed on
the basis of this observation and the requirements that
S@(q,w)=M®(q,w)D(q,w) must produce the correct in-
frared exponent aj= 7% the correctj dependence of the
known first frequency momenit! and, via sum rule, the
correct value for the direct susceptibiltyThe resulting(ap-
proximate expressiort?

5“q,0)

S(a)(q,w)= ®(w_wL(Q))®(wU(Q)_w)' 2.2 )

Vo?—wi(q)

for the two-spinon dynamic structure factor has been widely
used for the interpretation of inelastic neutron scattering g5 1. (a) Exact and(b) approximate two-spinon dynamic
measurements on a number of quasi-1D antiferromagnets gfycture factor. Both expressions are nonzero only in the shaded
low temperatur and for comparisons with the results of region of the @, ) plane bounded by, (q) and wy(q).
various computational studié3!*

It is interesting to note in this context that the exact dy-For the numerical evaluation of E¢2.3) we separate the
namic structure factoB(qg, ) of the Haldane-Shastry model singular part from the integrgP.4):
has a structure very similar to E@.2).X° In that model, as in
the XX model, all thg spectral weight &(q, ) is carried by 21(t)=—1y— In( tsinhzlt> “h(t), 2.7
the two-spinon excitations. 4

A detailed assessment of the merits and limitations of th?/vhere
result(2.2) has become possible only recently through a re-

markable new development. By approaches based on the h(t)=Ci(t)+ f,(t) — (1), (2.83
concept of infinite-dimensional symmetries which had been
developed in the context quantum grotf®ougourzi, Cou- <dXx cog xt) 1dx cog xt)
ture, and Kacit’ were able to derive the exact expression for fl(t):J X coshx’ 2 Zf X ;
. - . . 1 0 cothrx
the two-spinon transition-rate function in the fofm (2.8b)
M(q,w)zgefl(t), 2.3 lp=y+11(0)—f,(0)=0.3677D3.... (2.89

A series expansion di(t) =[Int+1y—h(t)]/2,
wheret=2(8,— 8,)/7 and

= sir?(xt/2) . t?
= coshi2x)cogxt)—1 S(t):f deZZ (=1)™min 1+ )
I(t)= [ dx— e, (2.4 0 m=1
xsinh(2x)coshx
C=e'0/2=0.7222 ..., (2.9
a T . . .
= brings Eq.(2.3) with t from Eg. (2.6) into closed form:
©= 5 costB; * 2008t (2.59 gs Eq.(2.3 g.(2.6)
() S {1+4[t/(4m—2)]32mt
q=—cot (sinhB;)—cot *(sinhB,).  (2.5b M(q,w)=Ctsinh - rﬂl {1+ [U4m]2 2"

By solving Egs.(2.5 we can express the auxiliary variable

t as a function of the two physical variablgse: The exact two-spinon part d§(q,w), i.e., the function

(1.7 with the density of state€l.5 and the transition-rate

4 w2 (q) - w2(q) function (2.3 evaluated numerically via Eq2.7) with Eq.
t= —cosh 1 IUZ—Z'-_ (2.6) (2.6 is plotted in Fig. 1a). For comparison, the approximate
W = wi(q) result(2.2) is shown in Fig. 1b). The two results look very
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similar, yet there are subtle differences, which may not mat- w=0 [5C1 1

ter for most experimental comparisons but are important for S (r,w) — =2\ In=. (3.6)
comparisons with other theoretical results. Both expressions T @

diverge at the lower spectral boundany(q). At the upper

boundary wy(q), S®®(q,0) has a discontinuity, whereas IV. SPIN AUTOCORRELATION FUNCTION
S@)(q,w) approaches zero continuously over a rounded
shoulder. The structure of the exact transition-rate functioqh
(2.9 lends itself naturally to be factorized into the approxi-
mate function(2.1) and a correction which accounts for the

A quantity of some interest in various experimental and
eoretical contexts is the frequency-dependent spin autocor-
relation function

modified singularities at the boundaries of the two-spinon too .
continuum: q)(w)zf_ dte " S(1)S). 4.2
M(q,@) =M@(q,w) yCt/2e" V", (210 The two-spinon contribution t@® (w),
lIl. SINGULARITIES AT @, (q) AND wy(q) @ =£F 2)
b (w)—Tr . dqS?(q,w), 4.2

What is the precise nature of the leading singularity in the
transition-rate functiorM (g, ) and in the two-spinon dy- s 3 piecewise smooth function over the range of two-spinon
namic structure facto6”)(q,w) at the spectral boundaries energies 8 w< and has singularities ab=0, 7/2, .
wy(q) and @ (q), and how do these smgulaarmes compareThe approximate two-spinon autocorrelation function in-
with those of the approximate result§®(q,w) and ferred from Eq.(2.2 can be evaluated in terms of elliptic

M®(q,w)? The answer is obtained by inserting B8.7)  integrals. It has a step discontinuity @at=0,
into EqQ. (2.3), evaluating the leading term far—0 and

t—oo, respectively, and inserting E(R.6) expanded accord- w01
ingly. P (@) > —+0(w), 4.3
At wy(q) the transition-rate function is thus found to ap- .
proach zero linearly, a logarithmic divergence ab= /2,
“Teuge wy(q) w— /2 1
M(Q,0) > —————[w —w], (3.1 (a) .
(q,0) - wﬁ(q)—wf(q)[ u(d) — o] ) D@ (@) oc|n|7T/2_w| , (4.4)
which implies that the two-spinon dynamic structure factorgng g square-root cusp at= ,
vanishes in a square-root cusp:
“7U8C V2w @ () — o[
V(g — 2o N2 s (32 P (w) = o \1-w. 4.5

2 2
T wy(q)— oL(q) . . L
The exact two-spinon expression has logarithmic diver-

M®(q,w) vanishes more slowly;-[wy(q) —®]"% imply-  gences aw=0, /2, and a linear cusp ai=
ing thatS®®(q,») drops to zero abruptly.

At w,(q) we find a square-root divergen@®r g+ ) in 0—0 1
both the exact and the approximate transition-rate functions, O (w) — o<In—, (4.6)
but in the former this power-law singularity is accompanied @
by a logarithmic correction:

w— /2 1 3/2
() _ -
Vg R [ef@—of@ 1 () “('”|w/z—w|) : “.7
, W -
a w (q) Vo— o (Qq)
1 P (w) - (7T w). (4.8
X \/In———. (3.3
o= (q) The functionsd®(») and®®(w) are plotted in Fig. 2.
Since the two-spinon density of states is a step function near
w,(q), only the prefactor changes B?)(q,): V. FINITE-CHAIN MATRIX ELEMENTS
oo To what extent and accuracy can the spectral-weight dis-

S2(q o) — M(q,w) (3.4 tribution of S(q,) be reconstructed from Eq1.6) on the

Vo?(q)— w(q) basis of finite-chain data for excitation energigsand tran-
sition ratesM, ? In a generic situation, the chances for suc-

cess may be remote. Convergence of the fiNitéata for Eq.
(1.6) toward the infiniteN spectral density may only exist in
an average sense, such as can be realized, at least in prin-

©0 1 [ 1 ciple, by a histogram representation of Ef}.6), but hardly
M) — ZWCZ In;, @5 in practice given the very coarse-grained spectral-weight dis-

For g— = the singularity atw, (q) turns into a much stron-
ger infrared singularity:
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1.5

— (I)(Z)(w) 20
- DY)

DP(w)
M(m,0)

10

FIG. 2. Two-spinon part of the frequency-dependent spin auto- FIG. 3. Two-spinon transition-rate function at= . The_solid
correlation function. The solid line represents the exact resultin® represents the exact resifi(q,») and the dashed line the
®?(w) and the dashed line the approximate re@fi{w). approximate resulM ® (g, ). Also shown are scaled finite-chain

transition rateNM, for all two-spinon excitations aj= 7 of sys-

tribution even in the largest systems that can be handlel™S WithN=638,...,16,28 spins, and for lowest two-spinon ex-
computationally. citations also of systems witiN=18,20,...,26. The low-

Among the ever growing collection of Bethe ansatz soIv-&iﬂuﬁng;ﬁeg'iglrsgLéingztﬁzr;zsre shown again in the insets
able models, there exist numerous situations where the spec- '

tral density of interest is dominated by a specific class OtDer of spectral contributions from systems with increasing

excitations that can be |dent'|f|ed In terms of Bethe quant.urTN are distributed over a fixed frequency interval. However,
numbers. When the dynamically dominant class of excita-

, . . ; when we focus on the lowest-lying excitation, for example,
tions consists of a two-parameter continuum, as is frequentl

: X We see that the data points move away from the dashed line
t.h? case, the tagk of reconstructing that spectral density fror'R)ward the solid line. IoThe uniform con\);ergence of this par-
finite-N data with reasonable accuracy may be perfecﬂyticular sequence of data points is best observable in the rep-

)[/iv:r?sm the reach of state-of-the-art computational appl'ca'resentation of the inset on the left of Fig. 3.

In the case at hand, the two-spinon excitation energie The region nean, () is shown magnified in the inset on

w, can be evaluated for finite chains over a wide range o e right. Here the finit?¥ data converge in a much more
N 4 ;
N and then again for infinit\, all via Bethe ansatz. The complicated pattern. Nevertheless, the trend is clearly toward

o " ) the linear behavior of the solid line and away from the
finite-N transition ratesM, can be evaluated directly from square-root behavior of the dashed line.

the Bethe ansatz wave function for the ground state and the . . -
. - L The corresponding results fgr= /2 are depicted in Fig.
two-spinon states up td=16 and indirectly from the finite- 4. Here the h%hest ?Wo-spinor? excitation Nvi 28, whicr?

tl\cl)%rguznsd-state wave function via the recursion mefﬁmqb we were unable to compute with sufficient accuracy via the

The crucial point for the reconstruction of the two-spinon
part of the dynamic structure fact&q,w) is that it factor-
izes into two smooth functions: the density of states
D(qg,w), which can be determined exactly via Bethe ansatz,
and the transition rate functioll!(q, ), toward which the
finite-N transition rates seem to converge in the following 3
sense: pick any sequence of finlletwo-spinon states with ‘g 5
energiesw, (N) and wave numbers, (N) converging to- 5
ward (q,w) asN—o. Then the associated scaled transition
ratesN M, converge toward the exact transition rate function
M(q,w).

In the main plot of Fig. 3 we show the transition rate
functions M (r,) (exact, solid ling and M®(7,w) (ap-
proximate, dashed linealong with scaled finitéN transition
ratesNM, for N=6,8,...,28. The downward deviation of

M(a).(mw) from M(7r,w) at low frequencies is due to the g 4. Two-spinon transition-rate functiong /2. The solid
lacking logarithmic corrections in the infrared divergence|ine represents the exact restl(q,») and the dashed line the
and the upward deviation at high frequencies due to the difypproximate resulM@(q, ). Also shown are scaled finite-chain
ferent cusp singularity ab (). transition ratedNM, for all two-spinon excitations aj=  of sys-

All finite-N data points fall close to the solid line. Their tems with N=8,12,16,28 spins. The low-frequency and high-
deviations from that line have an irregular appearance at firstequency parts are shown again in the insets with transformed
sight. This is attributable to the fact that an increasing numscales on both axes.

10
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recursion method, is not included. Even with the few finite-S(®(q, w). However, the exact coefficients of the polynomial
chain data points available in this case, the finite-size scalingre only known fom=0. Comparison of
behavior of the transition ratel§l, and their convergence
toward the exact transition-rate function is again convinc- @, C _
Ingly determined. Kl (C])— ;Ko(l_COS'.]), K0—0.9163 . (69)
VI. SUM RULES with Eq. (6.1) provides one way of measuring the relative
spectral weight of the two-spinon excitations:
How important is the two-spinon contribution 8{q, )
in relation to that of other excited states? The key to the K?2(q)
answer is provided by sum rules, such as the first frequency K.(q) =0.7130.. ., (6.10
moment, which is known for algj,

A somewhat larger share of spectral weight{®(q)/
I K,(q)=0.8462 . ., isaccounted for by§¥(q,w).
Ka(@)= f 0S(q.w)= (1 cosp), (6.1 A different way of measuring the relative two-spinon
spectral weight is provided by the static structure factor
(6.3). Here, the missing spectral weight of higher-lying ex-
citations is weighted less heavily. The exact two-spinon
static structure factor®(q)=K{?(q) taken from Eq.(6.6)

and whereEg=—N(In2—1/4) is the ground-state energy,
or the susceptibility,

0w
x(a)= ;fo - Saw), (6.2  and integrated ovey yields the total two-spinon intensity
which is known forq=0 only? x(0)=1/#2, or the inte- 1(2) 4Cj dx X2 e s(4xIm ~( 7289 (6.11)
grated intensity(static structure factoy T 7)o “cosh ' T ’

The total intensity oS®(q,w) is” 11¥=0.7424+.

The observation tha8®(q,w) overestimates the total
two-spinon intensity by a smaller fraction,
1®/1$9=1.0185, than the first frequency moment of the
two-spinon spectral weightkK{?(q)/K{?)(q)=1.1868, is

=g
I(q)EfO %S(q,w), (6.3

of which we know the grand total:

1(~ 1
ITz—f dal(q)=((S)%)=-. (6.4  consistent with the observation that it predicts too much
aJo 4 . .
spectral weight nea®(q) and too little neamw, (q).
The exact two-spinon contribution to timh frequency mo- At small g, where the two-spinon continuum is very nar-
ment of S(q, ), row, all frequency moments 08?)(q,w) and S®(q,w)
have exactly the same ratio
*dw
— - n
Kr‘l(q)_fo 27Tw S(qaw)! (65) Kl(qa)(q)q—>04c
() =0.8426. ... (613
as obtained from Eq(1.7) with Egs. (1.5 and (2.3 can be Kn'(a)

brought into the form o )
The implications of the frequency momer¢§?)(q) and

K2)(q) for the singularities of the static structure factor and

n+1 -1

(Q)_ = ["’U(q)] Kn(9), (6.6 the static susceptibility, respectively, are as follows. Given
the exact asymptotic finite-size gap of the lowest two-spinon

where excitation atq= 7,
= xsinhx (n=1)i2
kn(q)zf dx 2 (1—sin29tanh’-x g s(axim) N—e 2
o  Ccoshx 2 w, — —, a=-—, (6.13
6.7 N 2
Forn=2m+1=1,3, ... this expression reduces to a poly- and the exact infrared divergen¢®.6) of S?)(q,®), it is
nomial in cog, possible to determine, under standard scaling assumptions,
. the leadingN dependence of the integrated intensity at
K(2) 7T m) (1) m+1+1 a=m,
2m+1(Q)_— > z —or i (1—coxy) :
N—mcm
(6.89 I(m,N) — 2—;(InN)3’2 (6.14

= x(tanhx)?*1 s
KI= fo dX— oo © : (6.8D  with my=\2C/7. The exact coefficient, my/2m
=0.10P. .., issignificantly higher than the value 0.090 52
The exact sum rules fdf,,, 1(q) were shown to have pre- predicted in a recent DMRG stud¥ The leading singularity
cisely this general structuré?® which, incidentally, is also  of the integrated intensity fok=c,q—  is then predicted
reproduced by the frequency moments(z";‘gﬂ(q) of  to be of the form
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0.8
AIg) 2
0.3 Alm(q) 0.3
0.6 A Bt ()
s - Py 3
0.2 Iw(q) / F 02
S o4 e S,
01 ’
0 0.1 o
0.2
0 - 0
0 0.2 0.4 0.6 0.8 i 0 0.2 04 0.6 0.8 1
am : q/m
FIG. 5. Integrated intensitig$.3) in comparisoni(q) is repre- FIG. 6. Theq dependent susceptibilty6.2) in comparison:

sented by finiteN data forN=6,8, . .. ,28.19(q) is the exact two-  x(q) is represented by finitd- data forN=6,8, . .. ,28.x(?(q) is

spinon result.|®(q) is the approximate resulf7.1). The inset the exact two-spinon result(?(q) is the approximate resul7.2).

showsAI@(q)=1-1@(q)/1(q) andAI®@(q)=1-1@(q)/1(q). The inset shows the relative non-two-spinon integrated intensity
AxP(a)=1-xP(q)/x(q) andAx@(q)=1-x@(q)/x(q).

w

q—
12(q) — —In 1—%

m 312

= } , (6.19 The finiteN data indicate thal(qg) increases linearly
2m from zero for smallq and diverges logarithmically at
which is consistent with the exactly known leading =7 The initial rise of the finiteN data,
asymptotic term of the static spin correlation funcffon !(d)—0.271g/7, is significantly steeper than that of the

(SPSE, Y~ (—1)"n~X(Inn)¥2/n, two-spinon contribution| ?)(q)—0.210/ 7 and that of the
The corresponding leading terms for the static susceptibil@PProximate result,®)(q) — 0.2/ . Hence the integrated
ity read intensity of the non-two-spinon part 8&q,») increases lin-

early inq too.
N==m, The function|®(q) approximates the two-spinon inte-
x(m,N) — —NyN, (6.16  grated intensityl ) (q) quite well for g/7<0.6. At larger
e g, this is no longer the case. The divergence predicted by
expression(7.1), 1®~ —In(1—g/m), is weaker than the di-

@y NZIn(7=9) 6.17 vergence(6.15 of the exact two-spinon result. The inset of
A T—( ' ' Fig. 5 shows the relative non-two-spinon integrated intensity,
AI®(q)=1-13)(q)/1(q), and the relative deviation,
@gy=1—-1® i
VII. SIGNIFICANCE OF NON-TWO-SPINON PART Al (g)=1-1"(q)/1(q), of the approximate resu(fr.1).
OF S(q, ) If it can be assumed that the leading singularityl fd) at

g=m is produced entirely by the two-spinon part of
Where in @, ) space is the remaining spectral weight, S(q, ), then the functionAl®(q) must approach zero as
and how does it affect various quantities that can be derived— «. The dashed line in the inset does not rule out that this
from the dynamic structure factor? In answer to these quesassumption is correct.
tions, we investigate here the effects of the non-two-spinon It is interesting to compare these results with the exact
excitations on four quantities which are relatedSgy, ) integrated intensity of the Haldane-Shastry mddel,
and which can be computed with high precision from finite-| ("S)(q) = — (1/4)In(1-q/7), where non-two-spinon excita-

N data for the ground-state wave function. tions have zero spectral weight 8(q,). It turns out that
for q=13w/14, 1"9)(q) is a better approximation df(q)
A. Integrated intensity than1®)(q) is2*

The integrated intensity 0$(q,w), i.e., the static spin
structure facton(6.3) has been determined with high preci- B. Susceptibility

sion for wave numberg=<13x/14 from finiteN data of cy- The q dependent susceptibility af=0 is related to

clic chains withN< 28 sites* This result is plotted in Fig. 5 S(q, ) via the sum rulé6.2). This quantity, which has been
for cozmparison with the exgct two-spinon integrated intén-ygtermined with considerable accuracy from firitaata, is
sity 1®)(q) calculated fron5?)(q, ) via (6.3) and the inte- plotted in Fig. 6 for comparison with the exact two-spinon

grated intensity susceptibility y(2(q) calculated fromS®(q,») via Eq.

1 1+sing/2) (6.2) and the approximate res(lt
1®(q)= s—In——r— (7.0

27 co9q/2) 1 q
X@(a)=— = (7.2

obtained from the approximate res@® (g, w). sinq
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inferred from Eq.(2.2). 4 20

The normalization o8®(qg,w) was chosen such that the
exact value of the direct susceptibiftyy(0)=1/2, is cor-
rectly reproduced. With increasing x®(q) deviates in a 3
downward direction from x(q). Its divergence at
q=m,x®(q)~(7—q) %, is slightly weaker than the diver-
gence(6.17) of the exact two-spinon susceptibilty.

The contribution of the non-two-spinon spectral weight of
S(g,w) to x(q) in the limit g—0 is small as indicated by
the result 72x(?)(0)=0.8426.... The relative non-two-
spinon contribution to the susceptibilityA x(?(q)=1

15

Ryq)
[Ny
Ry(q)

—x®(q)/x(q), stays smaller than the relative non-two- 0
spinon integrated intensita1(?)(q) (see inset This indi- 0 0.5 1
cates that the non-two-spinon spectral weight is located pre- g/m

dominatly above the two-spinon continuum.

C. Frequency moments

Yet a different way to assess the non-two-spinon part of
S(q,w) employs the frequency momen.5) which are re-
lated, via sum rule& to short-range multispin correlations in
the ground state. Far=1 we know the exact result$.1).

For n=2,3,4,5 high-precision results have been calculated
from finite-N data for the associated ground-state expectation
values'® The momentK (?(q) of the exact two-spinon dy-
namic structure facto8%)(q,w) have been determined in
Eq. (6.6) and the moment& (?(q) of S?(q,®) in Ref. 20.

Forn=1, bothK{?(q) andK{¥(q) reproduce they de-
pendence of the exact sum r{&21) correctly, but the pref-
actors are smaller,

Ry(q)
Rfq)

FIG. 7. Ratios of frequency momen(s.4). Forn=2,3,4,5, the

K2 (q) K@ (q) R.(q) represent finiteN data forN=6, ...,28. TheR?(q) are
K1(q) =0.7130...., K1(q) =0.8462.., (7.3 exact two-spinon results and tRé?(q) are the moment ratios for
Eq. (2.2.

which again reflects the missing spectral weight of the non-

two-spinon excitations. Theg dependence of the moment The moment ratiosREf‘)(q) agree very well withcsz)(q)

ratios at smallq, but then deviate upwardly. Fop= 7/3, they rise
K(Q) even above the ratioR,(q). This discrepancy, which be-
R,(q)= m forn=2,3,4,5, (7.9 comes more conspicuous with increasimagain reflects the

fact thatS®®(q,») underestimates the spectral weight near
of the full dynamic structure factor as inferred from finite- the lower continuum boundarwy, () and overestimates the
N data are shown in Fig. 7 along with the correspondingspectral weight near the upper boundary(q)."

moment ratiosR?)(q) of S?)(q,») and the moment ratios
R@(q) of S®¥(q,w). The most striking observation is that
R,(q) approaches a nonzero value g@s>0, whereas the o _
exact and the approximate two-spinon moment ratios both go We can study the significance of the non-two-spinon ex-
to zero:RgZ)(q)~R§f‘)(q)~q”’1. This means that for long citations in a dynamical quantity by the same kind of com-

wavelengths the frequency moment§,(q), n=2, are parison if we consider the Laplace transform of the dynamic

4
dominated by non-two-spinon excitations, which are necesStructure factof,

sarily located above the narrow two-spinon band. In other
words, the two-spinon dynamic structure fac®f)(q,w) _ edw
does not contribute to the leadif@(q?) term of K,(q) for S(q,7)= jo Ee*“’TS(q,w). (7.5
n=2,

At larger wave numbers, the impact of the non-two-
spinon excitations on the moment ratios is more modest buThis quantity can be interpreted as a Euclidian time repre-
still significant. Here the deviation G{Ef)(q) fromR,(q) is  sentation ofS(q,w). For =0, it is the integrated intensity
almostq independent, and it grows with increasingThis  (6.3). From finiteN data forS(q,w) as obtained via the re-
again indicates that the non-two-spinon spectral weightursion method for systems with<28 sites:* this quantity
comes for the most part from higher frequencies than thean be accurately extrapolated fb— if q# . For the
two-spinon spectral weight. graphical representation, it is convenient to plot the function

D. Euclidian time representation
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12 If the threshold singularity were a square-root divergence
% as predicted by Eq(2.2), then the asymptotic growth of
p(q,t) would be exactly linear. The logarithmic correction in
the exact two-spinon threshold singulari$.4), however,
leads to a slight modification of the asymptotic growth of

&
= p(a.t),
K
< (g 1) s o
3 pE(AY) — s (7.7)
0 The dashed lines in Fig. 8 show the functipf?)(q,t) as
0 2 4 6 8 10

inferred from the exact two-spinon dynamic structure factor.
t The discrepancies are fairly small over the rangé stiown.
The deviationA®)(q,t)=p'?)(q,t) — p(q,t) is shown in the
inset. Not surprisingly, the function®(q,t) inferred from
Eq. (2.2) deviates more strongly from(q,t). This compari-
§on was already made in Ref. 14.

FIG. 8. The function(7.6) for q=u/4, w/3, w2, 2u/3, 37l4
(bottom to top. The solid lines represent extrapolated finitedata
and the dashed lines the exact two-spinon-part of that function. Th
inset shows the non-two-spinon par®(q,t) of the same function.
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