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Computer-simulation techniques are applied to analyze the late-stage ordering kinetics of a
two-dimensional annealed dilute Ising model quenched into regions of its phase diagram that
involve phase separation of phases with different densities. The order parameter of the model
is a nonconserved quantity, whereas the global density is conserved. The ordered phases of
the model are fourfold degenerate (2x1) and (2x2) superstructures on a square lattice. The
equilibrium phase diagram involves a region of coexisting (2x1) and (2x2) phases and a region
where the (2x2) phase coexists together with a gas phase. The results of the study show that
the phase-separation kinetics in all cases are consistent with the Lifshitz-Slyozov growth law,
R(t) ~ t'/3, where R(t) is the characteristic linear domain size. These results are in agreement
with recent low-energy electron-diffraction studies of the phase separation kinetics in O/W(110)

systems at high coverage.

I. INTRODUCTION

The late-stage kinetics of nonequilibrium systems un-
dergoing ordering processes, such as domain growth,
spinodal decomposition, and phase separation, is
strongly influenced by the conservation laws in effect.!=*
In particular, the conservation law for the order pa-
rameter is of paramount importance. In general it has
been found,® theoretically as well as experimentally, that
Lifshitz-Allen-Cahn kinetics, R(t) ~ t1/2, follows when
the order parameter is nonconserved (model A of criti-
cal dynamics®), whereas the Lifshitz-Slyozov law, R(t) ~
t!/3, applies when the order parameter is conserved’ =19
(model B). R(t) is a measure of the average linear size
of the ordering domains. A complication arises when the
order parameter is not conserved but at the same time
i1s coupled to some other quantity, such as the density
that is conserved (model C). In that case it becomes
of importance whether or not the involved domains and
phases have the same density. If the densities are the
same, e.g., as in the problem of domain growth in a
model with simple order-parameter degeneracy,?%?! the
Lifshitz-Allen-Cahn growth law applies. If, however, the
densities of the involved phases are not the same, long-
range-transport processes are needed to facilitate the sep-
aration process and the Lifshitz-Slyozov growth is again
expected to apply.?2 A carefully studied example of the
latter case is that of a quenched tricritical system where
the Lifshitz-Slyozov law has been found to indeed de-
scribe the late-stage-ordering kinetics.?3~2% The Lifshitz-
Slyozov theory?®?” was originally developed to describe
spinodal decomposition at low volume fractions. How-
ever, it has recently been shown?®2° that the theory can
be generalized to apply for arbitrary volume fractions of
the two phases.

Chemisorbed molecules on solid surfaces constitute a
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class of systems® that are prototypical for systems un-
dergoing ordering processes in which the density (cover-
age) is conserved but the order parameter is not. These
chemisorbed systems display ordered structures with sub-
lattice ordering. Hence the lateral diffusion leads to non-
conservation of the order parameter during the ordering
process. Only for (1x1) structures, where the density
and the order parameter is the same quantity, is the or-
der parameter conserved. Chemisorbed systems display
a very rich phase behavior with a variety of differently
ordered phases and associated phase-coexistence regions.
Hence this class of systems provides a rich laboratory for
investigating the kinetics of domain growth and phase
separation involving phases of different densities. Exper-
imentally, this is a field that is just opening up3°~3* due
to the application of high-resolution time-resolved tech-
niques.

In the present work we report on the results of
a computer-simulation study of the ordering kinetics
and phase-separation dynamics in a particular two-
dimensional site-diluted kinetic Ising model with antifer-
romagnetic interactions that has a phase diagram con-
taining regions of coexisting phases of different density.
The vacancies of the model are mobile and hence enter
directly into the ordering process and the phase separa-
tion. We are here going to consider very dilute situations
where about half of the lattice sites are unoccupied. The
low-dilution limit of the same model was investigated re-
cently in the context of a study of the effect of annealed
randomness on domain growth kinetics.3%:36

II. MODEL

The present theoretical study is built on a kinetic lat-
tice model. A kinetic lattice model is defined by two
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properties: (a) a Hamiltonian that governs a phase tran-
sition associated with certain ordering symmetries, and
(b) a kinetic or dynamic principle (a move class) that
specifies the possible transitions of the model and the
associated transition probabilities.

A. Hamiltonian and order parameters

The site-diluted square-lattice spin—% Ising antiferro-
magnet is defined by the Hamiltonian

NN NNN
H=J | oici+ > o], (1)
i>j i>j

where o; = 0,%+1 and the two summations extend over
nearest-neighbor (NN) and next-nearest-neighbor (NNN)
interactions, respectively. The spin value o; = 0 is asso-
ciated with vacant sites and the total vacancy concentra-
tion is ¢. The interaction constant is chosen to be anti-
ferromagnetic, J > 0. The model is arrayed on a square
lattice with open boundaries and N = L x L sites.

The ground state of the model in the nondiluted case
¢=0 is the fourfold-degenerate superantiferromagnetic
(2x1) structure shown in Fig. 1(a). Dilution of the sys-
tem releases the inherent frustration of the NN bonds in
the (2x1) structure and hence tends to stabilize another
superstructure in which the vacancies arrange themselves
in a sublattice ordering as shown in Fig. 1(b) for ¢ = 3.
This structure is a fourfold-degenerate (2x2) structure,
which is in fact a p(2x2) structure.

If we decompose the square lattice into four equivalent
square sublattices, Sy, Sy, S3, and S4, with the double
lattice parameter as indicated in Fig. 1(a), we can define
the various order parameters in terms of the sublattice
magnetizations

ni:N—IZaj~ (2)

JES

The four components of the (2x1) order parameter are

Ground-state structures for the spin-1 Ising

FIG. 1.
model in Eq. (1). (a) Fourfold-degenerate (2x1) ordeiing for
¢ = 0. The labeling 1-4 refers to the four sublattices used for
defining the order parameters in Egs. (3)-(12). (b) Fourfold-
degenerate (2x2) ordering for ¢ = 1. Solid and open circles

denote spin up and spin down, respectively.
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then given by
Y1 =M1 — N2+ 13— N4, (3)
Y2 = —m + 02— N3+ N4, (4)
Y3 = —n — N2+ N3+ N4, (5)
Ya=m+n2— 03— M, (6)

and the four components of the (2x2) order parameter
as

$1 = 2(n3 — 12), (M
$2 = 2(n2 — n3), (8)
¢3 = 2(m — na), (9)
$a = 2(ns —m). (10)

Furthermore, a two-component vacancy order parameter
can be defined as

11):2 Z 60,-;

J€S),S4

$5=2 Y &,

J€S53,53

(11)

(12)

where §,; = 1 for 0; = 0 and §,, = 0 otherwise. The var-
ious order parameters defined above are not independent.
The symmetry properties of the (2x1) structure are re-
alized physically for half-monolayer coverages of oxygen
on W(110) surfaces.3*

B. Model dynamics

The Ising model does not have a natural dynamics
of its own. We therefore associate it with a micro-
scopic stochastic dynamic principle that involves single-
site spin-flip excitations as well as spin-vacancy exchange
(translational diffusion). The spin-vacancy exchange in-
volves exchange of a spin and a vacancy at NN or NNN
positions as well as an attempt to simultaneously flip
the spin involved in the exchange. This dynamical prin-
ciple does not conserve any of the order parameters in
Egs. (3)-(12), but it conserves the vacancy concentra-
tion, i.e., the density.

The dynamic principle is expressed in a standard
Monte Carlo Metropolis scheme. A site, 7, and a NN
or NNN site, j, to ¢ are chosen at random and the fol-
lowing possibilities are considered: (i) If 0y = o; = 0,
nothing happens. (ii) If o; # 0 and o; # 0,0; is ran-
domly assigned a new value +1 (spin flip) with the stan-
dard Metropolis-transition probability of a spin flip. (iii)
Ifo; # 0and 0; = 0, or 0; = 0 and o; # 0, the
combined process of exchanging the site variables and
randomly assigning a value +1 to the site carrying the
spin is performed according to the Metropolis-transition
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probability of the combined process. In any of the three
cases (1)—(iii), the time parameter t is incremented by one
unit. This corresponds to a particularly simple choice
of time-scale ratio for the spin-flip dynamics and the va-
cancy diffusivity. The time is measured in units of Monte
Carlo steps per site (MCS/s). We have used a previously
developed® implementation of this updating scheme for
a vector processor. The implementation is based on a
generalized checkerboard updating principle according to
which the lattice is subdivided into 16 equivalent inter-
penetrating square sublattices. By this very open de-
composition it is possible to circumvent problems that
will arise in a tighter decomposition where the exchange
mechanism will correlate the sublattices. In the chosen
open decomposition the 16 sublattices are independent
and can be updated simultaneously. The consequences
of a vectorized dynamics for the scaling of the time pa-
rameter were investigated in a previous paper in which
it was found3® that the degree of vectorization does not
influence the Markov time parameter. This result is of
importance when the nonequilibrium properties are ana-
lyzed in terms of growth laws and dynamical scaling.

III. PHASE DIAGRAM

The equilibrium phase diagram has been determined
by Monte Carlo equilibrium simulations,®® Fig. 2. Since
our main use of the phase diagram is to guide the
nonequilibrium quenching simulations into coexistence
regions, we have not attempted to obtain either a very
accurate determination of the phase boundaries or a clar-
ification of the nature of the transitions near the multi-
critical point. At low temperatures the phase diagram

2.5 T L T T
kT /J
DISORDERED
20 1
1.5 ]
(2 x 1) [(2 X 2)]
1.0 1
,/[(2 x 2)]
05
2x1)+(2x2) 2x2)+V
* % * %
0 L ! T L 1
0 0.2 0.4 0.6 0.8 1.0
C
FIG. 2. Phase diagram of the model in Eq. (1) as deter-

mined by Monte Carlo simulations. The shaded areas denote
regions of the phase diagram where the numerical determi-
nation of the phase boundaries is uncertain. The symbols *
indicate the points to which quenches have been performed.
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contains two regions of phase coexistence: Below ¢ = %
the system separates into a diluted (2x1) phase and a
(2x2) phase with excess density; above ¢ = 1 the sys-
tem separates into a diluted (2x2) phase and an almost
pure vacancy phase (a gas phase). At low temperatures
the stability region for a homogeneous (2x2) phase near
c = % is very small and cannot, within the numerical
uncertainty, be distinguished from a single line, i.e., the
(2x2) phase can effectively be considered a so-called sto-

ichiometric compound.

IV. ORDERING AND PHASE SEPARATION
KINETICS

A. Quenching and measures of growth

We are now going to consider thermal quenches, for
fixed density c, from infinite temperature to temperatures
well inside the ordered phases of the phase diagram. The
major part of our results refers to quenches to a tem-
perature kgT/J = 0.25. We have also performed a few
selected quenches to kgT/J = 0.50 and 0.1 and have con-
firmed that the resulting growth characteristics do not
depend on temperature. We have considered two den-
sities, ¢=0.40 and 0.45, in the (2x1)—(2x2) coexistence
region, two densities, ¢=0.55 and 0.60, in the (2x2)-gas
coexistence region, as well as the stoichiometric density
¢=0.50. Each type of quench is carried out in ten differ-
ent realizations using different initial (random) configu-
rations and different random-number sequences for the
Monte Carlo Metropolis algorithm. The results are av-
eraged over these different realizations in order to obtain
ensemble averages. This type of averaging is particularly
important when non-self-averaging quantities3” are con-
sidered.

The time evolution of the ordering processes and the
phase separation is monitored by calculating a number
of measures of linear length scale. One of these is the
inverse of the excess energy per site,

AE(t) = E(t) — E(T), (13)

where E(t) is the nonequilibrium energy and E(T) =
E(t — o0) is the equilibrium energy. AE(t) is a measure
of the internal energy associated with the entire nonequi-
librium domain-boundary network. If scaling holds,33
AE™1(t) is a measure of the average linear domain size.
A more direct measure of the average domain size, R(t),
can be calculated from the full domain-size distribution
function, P(R,t), which we have also calculated. A fur-
ther measure of the growing ordered domains can be ob-
tained from the order parameters,?! specifically

4
Ly(t)= VN (Z[«ﬁi(t)}?) : (14)
i=1

4 1/2
Ly(t) = VN (Z[¢;(t)]2) : (15)

i=1



and

9 1/2
L,(t)=VN (Z[qs:f(t)?) . (16)
i=1

Since neither of these three length-scale measures, which
are related to the intensity of the scattering function at
the Bragg point, are self-averaging quantities, they are
more difficult to determine accurately than AE~1(¢) and
R(t). This is particularly true of L,(t), which refers to
only a twofold-degenerate ordering.

B. Kinetics, growth laws, and dynamical scaling

In Fig. 3 are shown some typical snapshots of micro-
configurations as they evolve in time for ¢=0.40, 0.50,
and 0.60. These snapshots illustrate the coarsening and
phase-separation process and how it qualitatively de-
pends on the vacancy concentration. At ¢=0.40 the ma-
jority phase is the (2x2) ordering with the (2x 1) domains
separated out as small clusters. The domain boundaries
between the different (2x2) domains are seen as defect
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lines with either excess spins (dark lines) or excess vacan-
cies (white lines). Hence there are heavy as well as light
domain walls. There is some tendency for accumulation
of vacancies in the domain boundaries. At ¢=0.60 there
are only traces left of the (2x1) phase, and the vacancy
phase appears as a thick-boundary network separating
the (2x2) domains. At ¢=0.50, the (2x2) domains have
grown to much larger sizes than they have at the corre-
sponding times for higher and lower concentrations. Fur-
thermore, these domains appear more compact than the
convoluted (percolative) domain patterns at ¢=0.40 and
0.60. There is a strong tendency for accumulation of va-
cancies in the domain boundaries. It is further noted that
there is a transient precipitation of small (2x1) droplets
that compensate for the low density of the domain walls.

The kinetics of the ordering and phase separation pro-
cess is analyzed in Figs. 4-7 where the various length-
scale measures are plotted versus time in double loga-
rithmic plots. The major result derived from these sets
of data is that the ordering process proceeds in an alge-
braic fashion for all investigated values of ¢. Moreover,
all measures of the growth give rise to the same growth

FIG. 3.

Snapshots of typical microconfigurations at three different concentrations as they evolve in time t (in units of

MCS/s) after quenches to a temperature kpT'/J = 0.25. Vacancies are denoted by blanks, (2x1) ordering is indicated in black,

and (2x2) ordering appears as grey.
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104 1 | L L 104 ! L n Il
0.40
AE(t) Ly(t)
10° A cH 10° 045}
Y
0.40 0.50
10% 0.45 | 10? - L
0.50 0.55
10 0.55 b 10 4 0.60 |
A
[+
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1 T T T T 1 T T T T
1 10 10? 10° ¢ 10t 1 10 10° 10° 4 10¢

FIG. 4. Log-log plot of the excess energy A E(t), Eq. (13),
vs time (in units of MCS/s) for five different vacancy con-
centrations c. The data, which for the sake of clarity have
been appropriately translated along the vertical axis, refer
to Monte Carlo simulations of systems with 200x200 sites
quenched to a temperature kgT/J = 0.25; cf. the phase dia-
gram in Fig. 2.

law

AE7Y(t) ~ R(t) ~ Ly(t) ~ Ly(t) ~ t" (17)
with n ~ 0.30 £ 0.05, and scaling is therefore obeyed.
The algebraic growth law is found to apply for almost
three decades in time. There is a trend in the data that
shows that the effective exponent value becomes slightly
lower as c is decreased.

Due to previously mentioned problems with the lack
of self-averaging, the quantity L,(t) shows considerably
more scatter than the other length-scale measures. Nev-
ertheless, the L, (t) data conform to the same growth law,
Eq. (17).

The dynamical-scaling properties of the ordering pro-
cess are investigated in more detail in Fig. 8, which
shows a plot of the linear-domain-size distribution func-
tion, P(R,t), in the case of ¢=0.60 for (2x2) domains.
This figure demonstrates that P(R,t) develops a peak

104
R(t) 0.40
103~// 045
/ 0.50
1074 i
0.55
10 0.60 |-
Cc
1 T T T T
1 10 10% 10% ¢ 10*
FIG. 5. Same as Fig. 4 for the average linear domain size

R(2).

FIG. 6. Same as Fig. 4 for the length-scale measure Ly(t),
in Eq. (15), derived from the spin-order parameters of the
(2x2) phase.

after some time and this peak moves towards larger val-
ues of R as time elapses corresponding to the growth
of the average linear domain size. By introducing the
time-dependent scaling variable, z = R(t)/R(t), into the
distribution function and by renormalizing in order to
define the scaling function

P(z) = R(t)P(R,1), (18)

where [ P(z)dz = 1, the inset in Fig. 8 demonstrates
that such a scaling function exists and that scaling is ful-
filled by the present set of data for t > 103 MCS/s. Since
the present set of data is rather limited and subject to
considerable statistical uncertainty, these findings should
be considered only as suggestive evidence for dynamical
scaling.

V. CONCLUSIONS

In this paper we have investigated the nonequilib-
rium ordering and phase separation processes in a two-
dimensional diluted Ising model. The model has an equi-

4 1
10 0.40
Ly(t)
10° -
0.45
/ 0.50
1074 0.55 I
10 4 0.60 |
A
Cc
1 1 T T
1 10 102 10° t 10*
FIG. 7. Same as Fig. 4 for the length-scale measure, L, (t)

in Eq. (16), derived from the vacancy order parameter.
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P(R,t)

0.08 |-

0.06 |-

0.04F

0.02F

0

0

FIG. 8. Domain-size distribution function, P(R,t), for
(2%2) domains in the case of quenches to a temperature
ksT/J = 0.25 for a vacancy concentration ¢=0.60. The data
refer to domains of the (2x2) phase, cf. Fig. 3, obtained
from Monte Carlo simulations on a lattice with 200x 200 sites.
A maximum in P(R,t) develops and maves to the right as
time elapses. Results are given for times =90, 159, 234, 344,
418, 509, 619, 752, 916, 1115, 1357, 1653, 2013, 2449, 2969,
3589, 4332, and 5225 MCS/s. The inset shows the corre-
sponding dynamic scaling function, 13(2:) in Eq. (18), where
£ = R(t)/R(t) is the scaling variable and ¢ > 1357 MCS/s.

librium phase diagram, which at low temperatures con-
tains regions of coexistence of phases that have differ-
ent densities, cf. Fig. 2, specifically coexistence between
(2x1) and (2x2) phases, and (2x2) and a gas phase.
The order parameter is not conserved as the system
evolves towards equilibrium. Furthermore, the ordered
phases that are nucleated after the quench are fourfold
degenerate. Hence we are considering a fairly complex
pattern-formation phenomenon, which implies spin or-
dering, phase separation of the spin-ordered phases, as
well as competition (domain growth) between the dif-
ferent thermodynamically degenerate domains of the in-
dividual spin-ordered phases. A further complication
arises in the region of coexistence of the (2x 1) and (2x2)
phases, since these phases—although of very different
densities—are energetically degenerate locally. Hence
transient behavior may arise due to local competition be-
tween the two types of ordering. This competition will be
governed by the local density, which in turn is controlled
by long-range-diffusion processes.

Our general finding is that the ordering and separation
processes, after quenches to either of the coexistence re-
gions, are described by an algebraic growth law, Eq. (17).

Different measures of the growth lead to the same growth
law and dynamical scaling seems to hold. The value of
the growth exponent, n ~ 0.30 &£ 0.05, is slightly below
but not inconsistent with the value n = % predicted by
the Lifshitz-Slyozov theory?® for spinodal decomposition
and phase separation in systems with a conserved or-
der parameter and for tricritical quenching. It is not
obvious that this theory should apply to the present
case. Firstly, the Lifshitz-Slyozov theory accounts for
two-component systems (e.g., double-degenerate order-
ing). Secondly, in our system the order parameter is
not conserved. It has been argued,?!:22 however, that
the Lifshitz-Slyozov growth law may also apply to non-
conserved systems, provided that the phase separation
involves phases of different densities. In that case long-
range diffusion controls the growth and the basic assump-
tion of the Lifshitz-Slyozov theory is fulfilled. The results
of the present work give further support to this argument.
Additional numerical evidence of a similar nature is based
on a study of the ordering processes in a diluted planar
rotor model with competition between herringbone and
pinwheel phases.3° This planar rotor model, which is a
model of mixtures of, e.g., Ny (or CO) and rare gases
physisorbed on graphite, at dilution i is in fact very sim-
ilar to the model in Eq. (1) at ¢=0.50, since both of them
in that case in equilibrium support a homogeneously or-
dered phase, a stoichiometric compound of (2x2) sym-
metry. Despite this fact, quenches of either model lead
to effective nonequilibrium phase separation of the two
phases, which are stable at the two sides of the stoichio-
metric composition. Hence, we do not observe formation
of a homogeneous (2x2) phase at ¢=0.50 during the time
course of the quenches reported in Fig. 3.

Systems of chemisorbed oxygen on W(110) surfaces are
realizations of the ordering symmetries of the Ising model
studied here. Obviously, due to higher-order and longer-
ranged interactions the phase diagram3* of O/W(110) is
more involved than the one in Fig. 2. However, at sub-
half-monolayer coverages O/W(110) is found to phase
separate into a gas phase and a (2x1) phase, and for
super-half-monolayer coverages into coexistence between
a (2x1) and a (2x2) phase. The kinetic exponent val-
ues found in the two regimes are found by low-energy
electron-diffraction (LEED) techniques® to be n ~ 0.28
and n ~ 0.2, respectively. Recently, Tringides?® per-
formed a LEED study of the phase-separation kinetics
of the O/W(110)-p(2 x 1) + p(2x2) system and found a
larger exponent value n =~ 0.31 £ 0.03. This exponent
value is probably more reliable than the earlier reported
value (0.2) since Tringides?® in his study for the length-
scale measure used the inverse second moment rather
than the peak intensity of the scattering function. Fur-
thermore, in this study the surface was carefully checked
for impurities by Auger spectroscopy. Hence our theo-
retical finding is consistent with the most reliable exper-
imental measurements. The tendency to find experimen-
tal exponent values on the low side of  and in particular

3
a lower effective exponent value in the coexistence region
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of the two ordered phases is consistent with the findings
of the present study. Finally, it should be mentioned that
the pioneering computer-simulation study*! within kinet-
ics of ordering on surfaces was in fact devoted to mod-
elling O/W(110) at ¢=0.25 by using a lattice-gas model
with a range of interaction extended to the third-nearest
neighbors on a square lattice. A very slow kinetics was
reported as described by an effective growth exponent
value n ~ 0.15. Recent work®*3¢ on the model studied
in this paper, but at much lower vacancy concentrations,
also led to a very slow (possibly logarithmic) growth be-
havior. Hence it appears that very slow kinetics may
arise in certain parts of the phase diagram with leads
to very low values of the effective growth exponent. Fur-
ther work is needed to clarify whether or not this is a real
asymptotic effect or just a transient or low-temperature
crossover effect.

In closing we wish to remark that the complicated and
slow growth behavior of competing and phase-separating
domains of different density is likely to be a rather
widespread phenomenon in condensed matter systems.
A very timely example is that of oxygen ordering in
the CuO basal planes of high-T. superconductors of
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the YBay;Cu3zO7_5 type. This two-dimensional ordering
problem, which is related to the superconducting prop-
erties of the material, is controlled by long-range oxygen
diffusion and it involves ordered phases of different den-
sities, specifically the orthorhombic I and II phases.? A
recent simulation study*3 of this problem indeed shows
that the overall ordering process for the oxygen atoms is
indeed very slow.
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FIG. 3. Snapshots of typical microconfigurations at three different concentrations as they evolve in time t (in units of
MCS/s) after quenches to a temperature kgT'/J = 0.25. Vacancies are denoted by blanks, (2x1) ordering is indicated in black,
and (2x2) ordering appears as grey.



