11 research outputs found

    Long-lasting impairment of mGluR5-activated intracellular pathways in the striatum after withdrawal of cocaine self-administration

    Get PDF
    Background: Cocaine addiction continues to be a major heath concern, and despite public health intervention there is a lack of efficient pharmacological treatment options. A newly identified potential target are the group I metabotropic glutamate receptors (mGluR1/5), with allosteric modulators showing particular promise. Methods: We evaluated the capacity of mGluR1/5 receptors to induce functional responses in ex vivo striatal slices from rats with 1) acute cocaine self-administration (CSA), 2) chronic CSA and 3) 60 days CSA withdrawal by westernblot and extracellular recordings of synaptic transmission. Results: We found that striatal mGluR5 are the principal mediator of the mGluR1/5 agonist DHPG-induced CREB phosphorylation. Both acute and chronic CSA blunted mGluR1/5 effects on CREB phosphorylation in the striatum, which correlated with the capacity to induce long-term depression, an effect which was maintained 60 days after chronic CSA withdrawal. In the nucleus accumbens, the principal brain region mediating the rewarding effects of drugs, chronic CSA blunted mGluR1/5 stimulation of ERK1/2 and CREB. Interestingly, the mGluR5 antagonist/inverse-agonist, MPEP, lead to a specific increase in CREB phosphorylation after chronic CSA specifically in the nucleus accumbens, but not in the striatum. Conclusions: Prolonged CSA, through withdrawal, leads to a blunting of mGluR1/5 responses in the striatum. In addition, specifically in the accumbens, mGluR5 signaling to CREB shifts from an agonist-induced to an antagonist-induced CREB phosphorylation

    Cellular distribution of the histamine H3 receptor in the basal ganglia : functional modulation of dopamine and glutamate neurotransmission

    Get PDF
    This is the author's version of a work that was accepted for publication in Basal ganglia. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Vol. 3 Núm. 2 (Jul. 2013)Altres ajuts: Red_de_Trastornos_Adictivos/RD06/0001/0015Histamine H3 receptors (H3R) are widely expressed in the brain where they participate in sleep-wake cycle and cognition among other functions. Despite their high expression in some regions of the basal ganglia, their functional role in this forebrain neural network remains unclear. The present findings provide in situ hybridization and immunohistochemical evidence for H3R expression in several neuronal populations of the rat basal ganglia but not in astrocytes (glial fibrillary acidic protein immunoreactive cells). We demonstrate the presence of H3R mRNA and protein in dopaminergic neurons (tyrosine hydroxylase positive) of the ventral tegmental area and substantia nigra. In the dorsal and ventral (nucleus accumbens) striatal complex we show H3R immunoreactivity in cholinergic (choline acetyltransferase immunoreactive) and GABAergic neurons (substance P, proenkephalin or dopamine D1 receptor positive) as well as in corticostriatal terminals (VGLUT1-immunoreactive). Double-labelling experiments in the medial prefrontal cortex show that H3R is expressed in D1R-positive interneurons and VGLUT1-positive corticostriatal output neurons. Our functional experiments confirm that H3R ligands modulate dopamine synthesis and the probability of glutamate release in the striatum from cortico-striatal afferents. The presence of H3R in such different neuronal populations and its involvement in the control of striatal dopaminergic and glutamatergic transmission ascribes a complex role to H3R in the function of the basal ganglia neural network

    Cellular distribution of the histamine H3 receptor in the basal ganglia : functional modulation of dopamine and glutamate neurotransmission

    No full text
    This is the author's version of a work that was accepted for publication in Basal ganglia. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Vol. 3 Núm. 2 (Jul. 2013)Histamine H3 receptors (H3R) are widely expressed in the brain where they participate in sleep-wake cycle and cognition among other functions. Despite their high expression in some regions of the basal ganglia, their functional role in this forebrain neural network remains unclear. The present findings provide in situ hybridization and immunohistochemical evidence for H3R expression in several neuronal populations of the rat basal ganglia but not in astrocytes (glial fibrillary acidic protein immunoreactive cells). We demonstrate the presence of H3R mRNA and protein in dopaminergic neurons (tyrosine hydroxylase positive) of the ventral tegmental area and substantia nigra. In the dorsal and ventral (nucleus accumbens) striatal complex we show H3R immunoreactivity in cholinergic (choline acetyltransferase immunoreactive) and GABAergic neurons (substance P, proenkephalin or dopamine D1 receptor positive) as well as in corticostriatal terminals (VGLUT1-immunoreactive). Double-labelling experiments in the medial prefrontal cortex show that H3R is expressed in D1R-positive interneurons and VGLUT1-positive corticostriatal output neurons. Our functional experiments confirm that H3R ligands modulate dopamine synthesis and the probability of glutamate release in the striatum from cortico-striatal afferents. The presence of H3R in such different neuronal populations and its involvement in the control of striatal dopaminergic and glutamatergic transmission ascribes a complex role to H3R in the function of the basal ganglia neural network

    Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: σ1-D1-H3 receptor complexes as key targets for reducing cocaine’s effects

    Get PDF
    The general effects of cocaine are not well understood at the molecular level. What is known is that dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine’s blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine
    corecore