240 research outputs found

    Membrane penetration and trapping of an active particle

    Get PDF
    The interaction between nano- or micro-sized particles and cell membranes is of crucial importance in many biological and biomedical applications such as drug and gene delivery to cells and tissues. During their cellular uptake, the particles can pass through cell membranes via passive endocytosis or by active penetration to reach a target cellular compartment or organelle. In this manuscript, we develop a simple model to describe the interaction of a self-driven spherical particle (moving through an effective constant active force) with a minimal membrane system, allowing for both penetration and trapping. We numerically calculate the state diagram of this system, the membrane shape, and its dynamics. In this context, we show that the active particle may either get trapped near the membrane or penetrates through it, where the membrane can either be permanently destroyed or recover its initial shape by self-healing. Additionally, we systematically derive a continuum description allowing to accurately predict most of our results analytically. This analytical theory helps identifying the generic aspects of our model, suggesting that most of its ingredients should apply to a broad range of membranes, from simple model systems composed of magnetic microparticles to lipid bilayers. Our results might be useful to predict mechanical properties of synthetic minimal membranes.Comment: 16 pages, 6 figures. Revised manuscript resubmitted to J. Chem. Phy

    Crystallization of BaF2 from droplets of phase separated glass evidence of a core shell structure by ASAXS

    Get PDF
    Crystallization of BaF2 from droplets of phase separated glass evidence of a core shell structure by ASAXS Armin Hoell, Vikram Singh Raghuwanshi, Christian Bocker, Andreas Herrmann, Christian Rüssel and Thomas Höche Glasses with the mol compositions 1.88 Na2O 15.04 K2O 7.52 Al2O3 69.56 SiO2 6.00 BaF2 and 1.88 Na2O 15.03 K2O 7.52 Al2O3 69.52 SiO2 6.00 BaF2 0.05 SmF3 were studied using X ray diffraction, transmission electron microscopy, and anomalous small angle X ray scattering ASAXS . While the glass doped with samarium showed liquid liquid phase separation of droplets with sizes of around 100 nm, the glass without samarium did not. The samples were annealed at 580 C or at 600 C which led to the crystallization of cubic BaF2. The X ray diffraction patterns showed strongly broadened lines. Hence, the BaF2 crystals possess sizes in the nm range. ASAXS gave evidence of a core shell structure. In agreement with earlier studies, it is assumed that the shell acts as a diffusion barrier that hinders crystal growth. Surprisingly, the cores and shells from the crystallization of the homogeneous glass and from the second glass, which is Sm doped and shows liquid liquid phase separation, both possess similar dimensions, even though the origin of the barrier is very different. The doped samples show long luminescence lifetimes of nearly 5 ms at a wavelength of 600 nm, which is nearly as long as those in fluoride phosphate glasse

    Deciphering human ribonucleoprotein regulatory networks

    Get PDF
    RNA-binding proteins (RBPs) control and coordinate each stage in the life cycle of RNAs. Although in vivo binding sites of RBPs can now be determined genome-wide, most studies typically focused on individual RBPs. Here, we examined a large compendium of 114 high-quality transcriptome-wide in vivo RBP-RNA cross-linking interaction datasets generated by the same protocol in the same cell line and representing 64 distinct RBPs. Comparative analysis of categories of target RNA binding preference, sequence preference, and transcript region specificity was performed, and identified potential posttranscriptional regulatory modules, i.e. specific combinations of RBPs that bind to specific sets of RNAs and targeted regions. These regulatory modules represented functionally related proteins and exhibited distinct differences in RNA metabolism, expression variance, as well as subcellular localization. This integrative investigation of experimental RBP-RNA interaction evidence and RBP regulatory function in a human cell line will be a valuable resource for understanding the complexity of post-transcriptional regulation

    Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient

    Get PDF
    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia

    Large-scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime

    Get PDF
    We report here measurements of the acidic gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) over the western Pacific basin during the February-March 1994 Pacific Exploratory Mission-West (PEM-West B). These data were obtained aboard the NASA DC-8 research aircraft as it flew missions in the altitude range of 0.3–12.5 km over equatorial regions near Guam and then further westward encompassing the entire Pacific Rim arc. Aged marine air over the equatorial Pacific generally exhibited mixing ratios of acidic gases \u3c100 parts per trillion by volume (pptv). Near the Asian continent, discrete plumes encountered below 6 km altitude contained up to 8 parts per billion by volume (ppbv) HNO3 and 10 ppbv HCOOH and CH3COOH. Overall there was a general correlation between mixing ratios of acidic gases with those of CO, C2H2, and C2Cl4, indicative of emissions from combustion and industrial sources. The latitudinal distributions of HNO3 and CO showed that the largest mixing ratios were centered around 15°N, while HCOOH, CH3COOH, and C2Cl4 peaked at 25°N. The mixing ratios of HCOOH and CH3COOH were highly correlated (r2 = 0.87) below 6 km altitude, with a slope (0.89) characteristic of the nongrowing season at midlatitudes in the northern hemisphere. Above 6 km altitude, HCOOH and CH3COOH were marginally correlated (r2 = 0.50), and plumes well defined by CO, C2H2, and C2Cl4 were depleted in acidic gases, most likely due to scavenging during vertical transport of air masses through convective cloud systems over the Asian continent. In stratospheric air masses, HNO3 mixing ratios were several parts per billion by volume (ppbv), yielding relationships with O3 and N2O consistent with those previously reported for NOy

    A comparative study of responses in planktonic food web structure and function in contrasting European coastal waters exposed to experimental nutrient addition

    Get PDF
    We quantify, compare, and generalize responses of experimental nutrient loadings (LN) on planktonic community structure and function in coastal waters. Data were derived from three mesocosm experiments undertaken in Baltic (BAL), Mediterranean (MED), and Norwegian (NOR) coastal waters. A planktonic model with seven functional compartments and 30-32 different carbon flows fit to all three experiments was used as a framework for flow-rate estimation and comparison. Flows were estimated on the basis of time series of measured biomass, some measured flows, and inverse modeling. Biomass and gross uptake rate of carbon of most groups increased linearly with increasing LN in the nutrient input range of 0-1 µmol N L-1 d-1 at all locations. The fate of the gross primary production (GPP) was similar in all systems. Autotrophic biomass varied by two orders of magnitude among locations, with the lowest biomass and response to nutrient addition in MED waters. The variation of GPP among sites was less than one order of magnitude. Mesozooplankton dominated by doliolids (Tunicata), but not those dominated by copepods, presumably exerted efficient control of the autotrophic biomass, thereby buffering responses of autotrophs to high nutrient input. Among the many factors that can modify the responses of autotrophs to nutrients, the time scale over which the enrichment is made and the precise mode of nutrient enrichment are important. We suggest a general concept that may contribute to a scientific basis for understanding and managing coastal eutrophicatio

    Effect of the particle size evolution on the hydrogen storage performance of KH doped Mg NH2 2 2LiH

    Get PDF
    In recent years, many solid state hydride based materials have been considered as hydrogen storage systems for mobile and stationary applications. Due to a gravimetric hydrogen capacity of 5.6 wt and a dehydrogenation enthalpy of 38.9 kJ mol H2, Mg NH2 2 amp; 8201; amp; 8201;2LiH is considered a potential hydrogen storage material for solid state storage systems to be coupled with PEM fuel cell devices. One of the main challenges is the reduction of dehydrogenation temperature since this system requires high dehydrogenation temperatures amp; 8201;200 C . The addition of KH to this system significantly decreases the dehydrogenation onset temperature to 130 C. On the one hand, the addition of KH stabilizes the hydrogen storage capacity. On the other hand, the capacity is reduced by 50 from 4.1 to 2 after the first 25 cycles. In this work, the particle sizes of the overall hydride matrix and the potassium containing species are investigated during hydrogen cycling. Relation between particle size evolution of the additive and hydrogen storage kinetics is described by using an advanced synchrotron based technique Anomalous small angle X ray scattering, which was applied for the first time at the potassium K edge for amide hydride hydrogen storage systems. The outcomes from this investigation show that, the nanometric potassium containing phases might be located at the reaction interfaces, limiting the particle coarsening. Average diameters of potassium containing nanoparticles double after 25 cycles from 10 to 20 nm . Therefore, reaction kinetics at subsequent cycles degrade. The deterioration of the reaction kinetics can be minimized by selecting lower absorption temperatures, which mitigates the particle size growth, resulting in two times faster reaction kinetic

    Distributions of Beryllium 7 and Lead 210, and Soluble Aerosol-Associated Ionic Species Over the Western Pacific: PEM West B, February - March 1994

    Get PDF
    Aerosol sampling for the determination of the concentrations of soluble ionic species and the natural radionuclides Be-7 and Pb-210 was conducted from the NASA DC-8 over the western Pacific as part of GTE/PEM-West B during February - March 1994. Concentrations of most soluble ionic species in the free troposphere were higher in samples collected on flights originating from Hong Kong and Japan than those collected further east over the open ocean. In both regions the measured concentrations were higher than those found during PEM-West A (fall 1991). Activities of Pb-210, a tracer of air masses influenced by sources on the Asian continent, showed the same patterns. These data indicate the effect of stronger continental outflow from Asia over the western Pacific during the spring compared to fall season. For readily scavenged aerosol-associated species and soluble acidic gases the strongest indications of Asian outflow were restricted to altitudes below 6 km. The distribution of the continental tracer Pb-210 was also compared to those of a large number of gas phase species measured on the DC-8. Relatively strong correlations were found with O3, and peroxyacetylnitrate (PAN), but only during the flights over the remote Pacific. During PEM-West A, similar correlations were seen, but they were stronger near Asia. We believe that correlations are a signature of continental air that has been processed by deep wet convection over land before being advected over the ocean. One flight over the Sea of Japan provided the opportunity to sample upper troposphere/lower stratosphere air in and around a tropopause fold. Concentrations of Be-7 reached 7 pCi/cu m STP, and peak O3, mixing ratios of 480 ppb were encountered at 10.7 km. The Be-7 data are used to estimate the fraction of stratospheric air mixed down into the troposphere by circulation in the fold

    Crystal Phase Transitions in the Shell of PbS CdS Core Shell Nanocrystals Influences Photoluminescence Intensity

    Get PDF
    ABSTRACT We reveal the existence of two different crystalline phases, i.e., the metastable rock salt and the equilibrium zinc blende phase within the CdS shell of PbS CdS core shell nanocrystals formed by cationic exchange. The chemical composition profile of the core shell nanocrystals with different dimensions is determined by means of anomalous small angle X ray scattering with subnanometer resolution and is compared to X ray diffraction analysis. We demonstrate that the photoluminescence emission of PbS nanocrystals can be drastically enhanced by the formation of a CdS shell. Especially, the ratio of the two crystalline phases in the shell significantly influences the photoluminescence enhancement. The highest emission was achieved for chemically pure CdS shells below 1 nm thickness with a dominant metastable rock salt phase fraction matching the crystal structure of the PbS core. The metastable phase fraction decreases with increasing shell thickness and increasing Exchange times. The photoluminescence intensity depicts a constant decrease with decreasing metastable rock salt phase fraction but Shows an abrupt drop for shells above 1.3 nm thickness. We relate this effect to two different transition mechanisms for changing from the metastable rock salt phase to the equilibrium zinc blende phase depending on the shell thicknes
    corecore