
Membrane penetration and trapping of an active particlea)

Abdallah Daddi-Moussa-Ider,1, b) Segun Goh,1 Benno Liebchen,1 Christian Hoell,1 Arnold J. T. M. Mathijssen,2

Francisca Guzmán-Lastra,1, 3 Christian Scholz,1 Andreas M. Menzel,1 and Hartmut Löwen1, c)
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The interaction between nano- or micro-sized particles and cell membranes is of crucial importance in many biological
and biomedical applications such as drug and gene delivery to cells and tissues. During their cellular uptake, the
particles can pass through cell membranes via passive endocytosis or by active penetration to reach a target cellular
compartment or organelle. In this manuscript, we develop a simple model to describe the interaction of a self-driven
spherical particle (moving through an effective constant active force) with a minimal membrane system, allowing for
both penetration and trapping. We numerically calculate the state diagram of this system, the membrane shape,
and its dynamics. In this context, we show that the active particle may either get trapped near the membrane
or penetrates through it, where the membrane can either be permanently destroyed or recover its initial shape by
self-healing. Additionally, we systematically derive a continuum description allowing to accurately predict most
of our results analytically. This analytical theory helps identifying the generic aspects of our model, suggesting
that most of its ingredients should apply to a broad range of membranes, from simple model systems composed of
magnetic microparticles to lipid bilayers. Our results might be useful to predict mechanical properties of synthetic
minimal membranes.

I. INTRODUCTION

Biological membranes play a crucial role in a large vari-
ety of cellular processes, and serve as a barrier to protect
the interior of living cells from unwanted agents and harm-
ful external influences1–7. The interaction between particles
and cell membranes is of crucial importance in a variety
of biomedical applications, including targeted phototherapy,
intracellular imaging, and diagnostic assays8–10. Once in-
jected into a living organism, particle uptake can be achieved
via passive mechanisms11–15 or can be mediated by active
processes involving cellular energy input16–19. Considerable
research advances have been made over the last few years
in understanding the penetration of particles into cell mem-
branes. Previous studies have shown that the particle uptake
by living cells is strongly affected by the particle proper-
ties20–24 and the physicochemical and functional properties
of the membrane25–30.

As a simple framework for studying basic mechanisms of
cell penetration, artificial model membranes provide a basis
for understanding complex interactions within living cells.
For example, the formation of a desired target membrane
structure can be driven by an entropic mechanism31 or can
be achieved using controlled external fields32–37. In particu-
lar, self-assembled colloidal membranes have offered a novel

a)Article contributed to the Topical Issue of the Journal of Chemical
Physics entitled “Chemical Physics of Active Matter” edited by Olivier
Dauchot and Hartmut Löwen.
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framework for studying fundamental physical problems, such
as geometric frustration in artificial spin-ice systems38–40,
and can conveniently be built from isolated microparticles
with adjustable interactions41–49. For this purpose, various
types of interparticle interactions could be exploited, among
which magnetic attraction stands out.

One possibility to construct such membranes are colloidal
magnetic particles, which serve as building blocks of magnet-
ically self-assembled chains and sheets. Magnetic nanoparti-
cles (MNPs)50,51 are well-established nanocomponents, ow-
ing to their diverse promising technological and biomedi-
cal applications. Notable examples include their potential
use as drug delivery agents52–54, or as mediators to con-
vert electromagnetic energy into heat (hyperthermia)55. By
binding MNPs to the surface of living cells, the membrane
mechanical properties can conveniently be tuned by an ex-
ternal magnetic field56–58. Further, magnetic colloidal and
nanoparticles have proved to be useful in the design of op-
tical stimuli-responsive materials59–62, and in the develop-
ment of artificial self-propelling active microswimmers63–77.
Meanwhile, the dynamical properties of self-propelled active
polymers and filaments have been investigated78–81. Addi-
tional works include the dynamics of semi-flexible polymer
chains in the presence of nanoparticles82, and the behavior
of polymers in a crowded solution of active particles83.

Here, we develop a minimal model for a (non-fluctuating)
membrane made of dipolar (e.g., electric or magnetic) parti-
cles sterically interacting with a constantly driven “active”
particle84–92. This particle may represent, e.g., a swimming
microorganism68,69 or a synthetic micro- or nanomachine
that can be manipulated under the action of controlled ex-
ternal fields93–96. Here, we focus on the case in which the
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persistence length of the trajectory of the active particle is
large compared to its initial distance from the membrane,
i.e., the particle essentially moves along a straight line to-
wards the membrane.

In general, active particles can reach normally inaccessible
areas inside living organisms and can perform delicate and
precise tasks, holding great promise for prospective biomedi-
cal applications such as precision nanosurgery97–99, or trans-
port of therapeutic substances to tumor and inflammation
sites100–102. Direct experimental observations have recently
demonstrated the self-driven motion of acoustically-powered
active nanorods inside living HeLa cells103. These nanomo-
tors have been shown to bump into cell organelles and exhibit
directional motion and spinning inside the cells. A detailed
modeling of the interactions of active particles and (cell)
membranes may help to shed light on our understanding of
the processes driving particle motion in living and synthetic
cell components. Additionally, a fundamental understand-
ing of these processes helps to improve the controllability
of micro- and nanoparticle-based agents in complex environ-
ments. Potentially, this might be relevant for novel thera-
peutic drug targets for health therapy. One step in this di-
rection has been taken recently specifically for self-propelled
particles interacting with a moving potential interpreted as a
semipermeable membrane104, identifying an enhanced par-
ticle accumulation in front of the membrane accompanied
with an increased drag force. Experimentally, the mechan-
ical pressure exerted by a set of both passive isotropic and
self-propelled polar disks onto flexible unidimensional model
membranes has been studied105.

In the present work, we investigate a membrane model
self-assembled from dipolar spheres arranged along a chain
in the two-dimensional space. Their dipole moment can ei-
ther arise from an unscreened magnetic or electric moment,
or from screened short-ranged electric interactions, also aris-
ing from polar colloidal clusters106. It has previously been
shown that a chain of magnetic particles can exhibit in-
trinsic mechanical properties reminiscent of elastic strings
or rods107–112 depending on the additional particle interac-
tions. In colloidal suspensions, magnetic interactions often
cause flocculation due to the strong attraction at short dis-
tances113. Such effects are usually counterbalanced by repul-
sive steric interactions that prevent overlapping particle vol-
umes at finite concentrations114–116. Additional elastic inter-
actions may be considered in the form of harmonic springs.
Particle systems subject to combinations of magnetic, steric,
and elastic interactions have widely been utilized as a model
system for ferrofluids and ferrogels117–126.

Using our simple model membrane as a basis to study the
penetration process by a self-driven particle (moving under
the action of a constant driving force), we obtain dynamical
state diagrams indicating trapping and penetration states.
We further observe penetration events with or without sub-
sequent healing of the membrane depending on the range of
the interactions between the membrane particles. Consider-
ing a chain of dipolar spheres, we derive a continuum the-
ory125,127 and we probe the particle displacement and dipole
reorientation caused by the self-driven particle in the small-

Figure 1. Illustration of the system setup. Under the action of
an effective propulsion force F0, a solid spherical particle of ra-
dius R approaches a membrane composed of N identical magnetic
spheres of radius a and dipole moment m. The membrane par-
ticles are initially equidistant with distance h from one another.
We denote by L the total length of the membrane. The parti-
cles composing the membrane are subject to dipolar, steric, and
elastic interactions. The system is immersed in a bulk liquid of
constant dynamic viscosity η.

deformation regime. Good quantitative agreement is found
between the theoretical results and numerical simulations.

The remaining part of the paper is organized as follows.
In Sec. II, we present the system setup and derive from the
potential energy the governing equations for the displace-
ment and orientation fields of the dipolar spheres. We then
present in Sec. III state diagrams indicating the possible
steady configurations of the system. Moreover, we probe
the transition between the dynamical states. In Sec. IV, we
devise a linearized analytical theory that describes the tem-
poral evolution of the membrane, and we provide solutions
for the trapping state in Sec. V. Concluding remarks are
contained in Sec. VI.

II. SYSTEM SETUP

We consider in two spatial dimensions a simple model
membrane composed of a chain of N identical dipolar parti-
cles of radius a and dipole moment m. Here, we assume that
the dipole moments rotate rigidly with the particles. The
membrane is fully immersed in a Newtonian viscous fluid of
constant dynamic viscosity η. We support the chain at its
extremities such that the particles on both ends are fixed in
space. Moreover, we neglect Brownian noise, which should
play only a minor role when considering large membrane and
large self-driven particles or systems at low temperatures. In
the resulting equilibrium configuration, the dipolar particles
are uniformly distributed along the chain and aligned along
the x direction (Fig. 1). We denote by h the interparticle dis-
tance, initially set identical for all particles, and by L = hN
the total length of the chain.
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A. Potential energy of the membrane

Next, we assume that the membrane particles are subject
to three types of mutual interactions, namely, dipolar, steric,
and elastic interactions. Accordingly, the system potential
energy governing the time evolution of the membrane can
be written as

U = UM + US + UE , (1)

where UM, US, and UE are contributions stemming from the
dipolar, steric, and elastic interactions, respectively. In this
study, we neglect for simplicity the fluid-mediated hydrody-
namic interactions between the particles.

In the following, mi denotes the dipole moment of the
ith membrane particle, i = 1, . . . , N . It is assumed that the
magnitudes of the dipole moments are equal and constant
for all the membrane particles, m = |mi|. Then, the dipolar
part of the potential energy may be expressed as128

UM =
µ0m

2

4π

N∑
i,j=1
j<i

1

r3ij

(
m̂i ·m̂j−3 (m̂i · r̂ij) (m̂j · r̂ij)

)
, (2)

where µ0 is the magnetic vacuum permeability, m̂i = mi/m
gives the orientation of the ith dipole moment, rij = ri −
rj denotes the distance vector from particle j to particle i,
rij = |rij | is its magnitude, and r̂ij = rij/rij stands for the
corresponding unit vector.

In order to avoid aggregation of the dipolar particles, we
consider a repulsive Weeks–Chandler–Andersen (WCA) pair
potential. The corresponding potential energy reads129

US = 4ε

N∑
i,j=1
j<i

Nij

(
σ

rij

)6
((

σ

rij

)6

− 1

)
+ ε , (3)

where we have defined the shorthand notation Nij =
H (rC − rij), with H(·) being the Heaviside step function

and rC = 21/6σ denoting a cutoff radius beyond which the
potential energy is set to zero. Here, σ = 2a is the parti-
cle diameter, and ε is an energy scale associated with the
hardness of the potential.

In addition, we allow for harmonic elastic-like interactions
among adjacent particles. These interactions are included
as springs of constant stiffness k and rest length r0. The
corresponding potential energy is given by

UE =
k

2

N−1∑
i=1

(ri,i+1 − r0)
2
. (4)

Consequently, the resulting force and torque acting on the
ith sphere are calculated from the system potential energy

as66 Fi = −∂U/∂ri and Ti = −m̂i × (∂U/∂m̂i). We obtain

Fi =
3µ0m

2

4π

N∑
j=1
j 6=i

1

r4ij

(
(m̂j · r̂ij) m̂i + (m̂i · r̂ij) m̂j

+ (m̂i · m̂j) r̂ij − 5 (m̂i · r̂ij) (m̂j · r̂ij) r̂ij
)

+ 48ε

N∑
j=1
j 6=i

Nij

(
σ

rij

)6
((

σ

rij

)6

− 1

2

)
r̂ij
rij

+ k

i+1∑
j=i−1
j 6=i

(
r0
rij
− 1

)
rij (5)

and

Ti = −µ0m
2

4π

N∑
j=1
j 6=i

m̂i × cij
r3ij

, (6)

where we have defined, for convenience, the dimensionless
vector cij = m̂j − 3 (m̂j · r̂ij) r̂ij .

B. Dynamical equations

Assuming low-Reynolds-number hydrodynamics130, the
moments of the particle velocities are related to the mo-
ments of the hydrodynamic forces acting on them via the
mobility functions131,132. Neglecting mutual hydrodynamic
interactions between the particles yields

Vi = µ
(
Fi + F ext

i

)
, Ωi = γ Ti , (7)

where Vi and Ωi denote the linear and angular velocities of
the ith membrane particle, respectively. Here, µ = 1/(6πηa)
and γ = 1/(8πηa3) are, respectively, the translational and
rotational mobilities for a sphere as given by the Stokes for-
mulas. Moreover, F ext

i is the external force resulting from
the steric interaction with the self-driven particle that is
moving under the action of a constant driving force F0 =
F0 êy. Here, we assume that the self-driven spherical par-
ticle of radius R interacts with membrane particles via the
same soft repulsive WCA pair potential stated by Eq. (3),
for σ = a+R.

Then, the equation of motion for the translational degrees
of freedom reads

dri
dt

= Vi . (8)

Similarly, the equation governing the temporal evolution of
the orientation of the ith particle is given by

dm̂i

dt
= Ωi × m̂i , (9)
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which can be rewritten as

dm̂i

dt
=
γµ0m

2

4π

N∑
j=1
j 6=i

1

r3ij

(
(m̂i · cij) m̂i − cij

)
, (10)

by making use of Eqs. (6) and (7).
Considering now two-dimensional orientation vectors in

the (xy) plane, the particle orientations are represented in
the Cartesian basis system as m̂i = (cosφi, sinφi) with the
angle φi measured relatively to the x direction. Further-
more, the angular velocity vector then possesses only one
single component (along the z direction). Hence, the tem-
poral evolution of the orientation angle of the ith particle is
calculated as

dφi
dt

= Ωi · êz = γ (Ti · êz) . (11)

We now introduce an additional cutoff length ` = 3h/2
for the dipolar and elastic interactions. That is, we multi-
ply a Heaviside function of the form H(` − rij) to Eqs. (5)
and (6). Accordingly, these interactions are now truncated
beyond next-nearest neighbors. Such a cutoff can be reason-
able for screened electric dipolar interactions. This assump-
tion does not significantly change our results except for the
membrane destruction state of absent-healing (see below),
the occurrence of which hinges on the cutoff.

III. STATE DIAGRAM

As an initial configuration of the membrane, the interpar-
ticle distance h is taken equal to the cut-off radius rC beyond
which the steric forces vanishes. Moreover, we assume that
the rest length of the springs is equal to this initial interpar-
ticle equilibrium distance, i.e., r0 = 27/6a.

Our parameter space has four essential dimensions. The
two dimensionless numbers

E1 =
µ0m

2

4πa3ε
, E2 =

aF0

ε
(12)

quantify, respectively, the importance of the attractive dipo-
lar force (∼ µ0m

2/a4) and of the active force F0 relative to
the repulsive steric force (∼ ε/a) at particle contact. These
two parameters will, respectively, be denominated as re-
duced dipole strength and reduced activity. One additional
dimensionless number

κ =
π

6

kh5

µ0m2
(13)

corresponds to the ratio of the elastic to the dipolar interac-
tions. Moreover, we define the dimensionless number

δ =
R

a
(14)

as the ratio of the radius of the active particle relative to that
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Penetration (with healing)
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Figure 2. (Color online) Ability of penetration or trapping as a
function of elasticity. Shown are state diagrams for (a) κ = 0,
(b) κ = 1, and (c) κ = 10. Symbols represent the final states
obtained from numerical integration of the dynamical equations,
given by Eqs. (5)–(11). Here, membranes consisting of N = 20
dipolar particles have been examined, and we set the size ratio
δ = 1. Depending on the values of the dimensionless numbers E1

and E2, the active particle is either trapped (blue squares), or
passes through the membrane to reach the other side. After full
penetrations, the membrane either shows a self-healing ability
(red triangles) or remains permanently damaged (green disks).
The latter behavior is only observed in the case of strongly elastic
membranes shown in (c), for the present set of parameters. The
solid lines display estimates of the transition line between the
states.
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Figure 3. (Color online) Membrane dynamics of trapping and penetration states. (a) Frame series in the trapping state for N = 20,
κ = 0, δ = 1, E1 = 1, and E2 = 10−2. Here, the frames are displayed every 0.2 tS, where tS = ηL3/ε is the simulation time
unit. (b) Time evolution of the translational velocity of the active particle in the trapping state. (c) Frame series of the membrane
conformation during the penetration state with healing, using the same set of parameters as in (a), except for E1 = 0.1. The frames
are displayed in time every 0.6 tS. The black and green circles represent the positions of the membrane particles, respectively, before
and after the active particle (blue disk) reaches the upper side. As shown, the membrane recovers its original conformation after the
active particle has passed (red circles). Panel (d) shows the corresponding translational velocity of the active particle versus time.
(e) Frame series of the membrane shape during the penetration state without healing, using the same parameters as in (c), except for
R = 5a. The frames are displayed every 6 tS in time with the same color as in (c). Circles shown in red represent the steady positions
of the membrane particles. Panel (f) displays the corresponding time evolution of the active particle. We note that the particles in
(a), (c), and (e) are not plotted to scale. Accordingly, the shown circles and disks only correspond to the positions of the centers of the
particles. (The membrane particles and the driven particle in (a) are actually in contact, but the scales on the ordinate and abscissa
are pronouncedly different). Time t = 0 in the subfigures (b), (d), and (f) corresponds to the moment when the active particle and
the membrane begin to mutually interact.

of the membrane particle. The parameters κ and δ will be
denominated as reduced stiffness and size ratio, respectively.
For future reference, we also introduce a dimensionless num-
ber quantifying the ratio of the driving and dipolar forces in

the form

P0 =
1

12

(
h

a

)4
E2

E1
. (15)
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The latter will serve as our key control parameter discrim-
inating trapped from penetrating states as detailed below.
We note that h/a = 27/6 is kept constant such that P0 is
fully determined from the ratio E2/E1.

In Fig. 2, we present state diagrams identifying the pos-
sible dynamical states of the system in the plane of the
two control parameters E1 and E2. The diagrams are con-
structed by numerical integration of the dynamical equations
of motion using a 4th-order Runge-Kutta scheme with adap-
tive time step133. Results are shown for three values of the
reduced stiffness κ which span a wide range of values to be
expected in various situations. Here, we set N = 20 and
δ = 1. We have tested the robustness of the state diagrams
by varying the number of membrane particles and have found
no qualitative difference. Depending on the combination of
the relevant control parameters, the self-driven particle ei-
ther penetrates, or remains in direct contact with the mem-
brane (trapping state). In the latter case, the particle is
essentially held back due to the steric interactions with the
membrane particles. Furthermore, two penetration regimes
are identified depending on whether the membrane self-heals
and recovers its initial undeformed shape (red triangles) or
remains damaged after the particle reaches the other side
(green disks in (c)). Qualitatively, penetration scenarios are
observed for higher values of P0 that indicate larger driving
forces or smaller restoring dipolar forces than those in the
trapped state. For κ� 1, penetration happens when

P0

κ
=

2F0

kh
& 1 , (16)

i.e., when the active force is larger than the overall elastic
and dipolar restoring forces of a membrane particle with its
two neighbors. After membrane penetration, self-healing al-
ways occurs for non- or weakly-elastic membranes, for the
present set of parameters. In contrast to that, the membrane
may remain permanently damaged for strongly elastic mem-
branes, see Fig. 2 (c). Besides, the elastic interactions cause
a noticeable ‘shifting’ of the transition line between the pen-
etration and trapping states. Apart from that, they do not
qualitatively alter our results and will therefore be omitted
in most of our later calculations. It is worth noting that the
detailed form of the steric repulsion may not be important
as long as the reduced dipole strength E1 � 1. An alter-
native could be the use of hard-core interactions. However,
a softer potential is adopted here for numerical convenience
to prevent the interparticle forces from diverging during the
evolution dynamics.

We now describe the dynamical scenarios of the trapped
and penetrating states depicted in Fig. 3. First, we exam-
ine the time evolution of membrane configurations. At the
initial stage of the dynamics, the active particle pushes the
membrane and subsequently bends the membrane, as can be
seen in Fig. 3 (a), (c), and (e). If the active force is strong
enough (P0 � 1), such deformation persistently increases
and induces a growing distance between the two center par-
ticles of the chain, giving rise to a weakening of their mutual
dipolar attraction. Consequently, the active particle pene-

0

3

6

9

12

10−5 10−4 10−3 10−2 10−1

δ
=
R
/a

E2 = aF0/ε

κ = 0, E1 = 10−2

Trapping
Penetration (with healing)

Penetration (without healing)

Figure 4. (Color online) State diagram of trapping and penetra-
tion in the parameter space of size ratio δ and reduced activity E2,
while keeping the reduced stiffness κ = 0 and the reduced dipole
strength E1 = 10−2. Here, we have examined membranes con-
sisting of N = 20 dipolar particles. Symbols represent the final
dynamical state obtained from numerical integration of Eqs. (5)–
(11).

trates through the membrane, see Fig. 3 (c) and (e). De-
pending on the size of the active particle relative to that of
the membrane particles, the membrane either closes again to
recover its initial aligned configuration (self-healing behav-
ior shown in (c) for δ = 1) or remains permanently deformed
(as shown for δ = 5 in (e)). In addition, we observe that the
penetration event is also accompanied by a slight abrupt in-
crease in the particle speed (small cusp occurring in (d) at
t/tS ' 0.6 and in (f) at t/tS ' 1.6). This small augmenta-
tion of speed is due to the steric interactions which support
the particle motion at this final stage when the penetrated
particle is sterically repelled by the nearby membrane par-
ticles. In sharp contrast, when P0 � 1, the membrane de-
velops a triangular profile, reaching a steady state without
allowing the self-driven particle to pass, see Fig. 3 (e). This
trapping behavior is investigated in more details in Secs. IV
and V. Meanwhile, both scenarios can also be understood
in terms of the velocity profiles of the self-driven particle
presented in Fig. 3 (b), (d), and (f). Since the dynamics
are overdamped, the velocity can be interpreted as the total
net force exerted on the particle. Accordingly, membrane
penetration occurs when the external driving force remains
larger than the membrane restoring forces.

In order to explore the membrane behavior in the pen-
etration state in more detail, we present in Fig. 4 a state
diagram in the parameter space (δ, E2). Here, we keep the
other parameters fixed at κ = 0, E1 = 10−2, and N = 20.
We observe that the transition between the trapping and
penetration states can only be enabled by increasing the re-
duced activity E2, regardless of the size ratio δ. However, the
latter strongly affects the membrane behavior in the penetra-
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tion scenario. In the considered range of parameters, lower
values of δ lead to self-healing, while larger values imply per-
manent damage of the membrane. The observed suppression
of the healing behavior for large enough penetrating parti-
cles can be understood by the fact that the mutual distance
between the two central beads becomes larger than the cut-
off distance `, which could represent the average distance
between cytoskeletal cross-linkers for biological membranes.
If these links are broken by large active particles, the at-
tractive interactions between the membrane particles van-
ish. Consequently, the membrane is split up and remains
permanently destroyed, or at least until other mechanisms
help the membrane to regenerate. Without the cutoff, the
membrane because of the long-ranged forces always heals
after a penetration event.

IV. ANALYTICAL THEORY

To proceed analytically, we restrict ourselves to the small-
deformation regime. Then, we linearize the dynamical equa-
tions and solve for the membrane displacement and dipole
orientation fields.

A. Evolution of the membrane particles

In the deformed configuration, the position vector of each
dipolar particle in the laboratory frame of reference can be
written as ri = (di + ui)êx + ρiêy, wherein di = h(i−N/2),
i = 1, . . . , N , represents the equilibrium x positions of the
particles in the initial configuration. Without loss of gener-
ality, we consider here only even numbers of N . In addition,
ui and ρi denote the membrane displacements along the x
and y directions, respectively.

We assume that the active particle has a radius compara-
ble to that of the membrane particles. For the dipolar parti-
cles that are not at the chain ends, i.e., for i = 2, . . . , N − 1,
the projection of the dynamic equations governing the trans-
lational motion of the ith sphere, given by Eq. (8), can be
presented in a linearized form as

1

A

dui
dt

=
72εµ

Ah2
(
(ui+1 − ui)Ni,i+1 − (ui − ui−1)Ni,i−1

)
+ 2 (κ− 1)

ui+1 − 2ui + ui−1
h2

−
µF‖i
A

, (17a)

1

A

dρi
dt

=
ρi+1 − 2ρi + ρi−1

h2
− φi+1 − φi−1

4h
+
µF⊥i
A

, (17b)

where we have defined A := 3µ0m
2µ/(πh3), a parameter

that has the dimension of a diffusion coefficient. We as-
sume that ri,i±1 < ` always holds in the small-deformation
regime considered here. Moreover, F‖i = Fi sinα and

F⊥i = Fi cosα, where Fi = F
(
δi,N/2 + δi,N/2+1

)
is the mag-

nitude of the force acting on the two central particles due to
the steric interactions with the active particle. Thus, Fi = F
if i ∈ {N/2, N/2 + 1}, and Fi = 0 otherwise. This implies

that the active particle is exactly positioned between the
central two beads of the membrane. We have also explored
the situation where N is an odd number, in which the ex-
ternal force is only exerted to the center particle, and have
found quantitatively similar results. Continuing, α is the an-
gle formed by the y axis and the line connecting the center
of the self-driven particle to that of the closest membrane
particle (see Fig. 1). This angle is defined as negative for
clockwise rotation from the y axis. Notably, the dipolar in-
teractions manifest themselves in both the longitudinal and
transverse force balance equations, whereas the steric and
elastic interactions are (at linear order) only involved in the
longitudinal force balance equation. This behavior resembles
that of elastic membranes, where stretching and bending ef-
fects are predominately pronounced along the tangential and
normal traction jumps, respectively134–138. Therefore, our
self-assembled chains can be used as a minimal model mem-
brane with effective stretching and bending moduli, in anal-
ogy to purely elastic membranes with stretching and bending
deformation modes.

Similarly, we proceed with the torque balance given by
Eq. (11), and derive an approximate equation for the rota-
tional motion of the membrane particles. Upon linearization,
we obtain

dφi
dt

=
B

2

(
ρi+1 − ρi−1

h
− φi+1 + φi−1 + 4φi

3

)
, (18)

where we have defined a parameter B := 3A/
(
8a2
)

with the
dimension of inverse time. We also used the fact that the
translational and rotational mobilities of a sphere are related
via γ/µ = 3/(4a2).

The two particles located at the membrane extremities re-
main fixed in space (zero displacement) and not subject to
any dipolar torques. The latter could be achieved, for in-
stance, if for the two particles at the ends of the membrane
the dipole moment can freely rotate inside the particle, rel-
atively to the particle frame. Therefore, Eqs. (17) and (18)
are subject to the boundary conditions

ui = ρi = 0 , for i ∈{1, N} , (19a)

φ2 + 2φ1 − 3
ρ2
h

= 0 , (19b)

φN−1 + 2φN + 3
ρN−1
h

= 0 . (19c)

B. Evolution of the active particle

The active particle is subject to the constant force F0 act-
ing along the y direction in addition to the resistive forces
due to the steric interactions with the two central particles.
Denoting by µP = 1/(6πηR) the translational mobility func-
tion of the self-driven particle, the governing equation for the
translational motion along the y direction reads

1

µP

dyP
dt

= F0 − 2F cosα . (20)
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For future reference, we define r as the steady center-to-
center distance separating the self-driven particle from the
central particles in the trapping state. For an interparticle
distance r . rC, the magnitude of the WCA force acting on
a central particle can, to leading order, be approximated by

F =
36 · 22/3ε

σ

(
21/6 − r

σ

)
, (21)

where σ = a+R.
Inserting the latter equation into Eq. (20) and setting the

left-hand side to zero, the steady-state distance separating
the self-driven particle from the central particles is given by

r =
h

2

(
1 +

R

a

)(
1− E2

288

(
1 +

R

a

)
h

a cosα

)
, (22)

where we have used the constraint that h/a = 27/6.
Eqs. (17) and (18) form 3(N − 2) ordinary differential

equations in time for the unknown displacement and orien-
tation fields. These equations are subject to the six bound-
ary conditions given by Eqs. (19) in addition to the initial
conditions of vanishing displacement and orientation fields.
In the steady state, the problem reduces to finding the so-
lution of a set of recurrence equations relating the positions
and orientations of adjacent spheres. In Sec. V, we present
an analytical solution of the resulting recurrence problem.
In addition, we show that the underlying equations for the
motion of the membrane particles can conveniently be pre-
sented in the continuous limit using partial differential equa-
tions that describe the temporal and spatial evolution of the
membrane displacement and dipole orientation.

V. SOLUTION FOR THE TRAPPING STATE

A. Steady solution of the recurrence problem

For E2 � 1, it follows from Eq. (22) that r ∼ h(1 + δ)/2,
where again δ = R/a. Assuming that |ui| � h, for
i = 1, . . . , N , yields sinα ' h/(2r). As a result, α '
arcsin (1/(1 + δ)).

Due to the symmetry of the problem with respect to the
membrane center, it is sufficient to solve the recurrence prob-
lem for i ∈ {1, . . . ,M}, where M := N/2. In the steady
state, it follows readily from the force balance Eq. (20) that

F = F0/(2 cosα), where cosα '
(
1− 1/(1 + δ)2

)1/2
.

1. Longitudinal displacement

The mutual distance between adjacent particles in the
trapping state is significantly larger than the cut-off distance.
Therefore, the steric interactions between membrane parti-
cles vanish, and only the elastic and dipolar interactions are
relevant.

Assuming that κ 6= 1, Eq. (17a) that governs the final
steady-state membrane displacement along the x direction,
for 1 < i < M , can be written as

ui+1 − 2ui + ui−1 = 0 . (23)

The latter expression is subject to the boundary condition
uM−1 − 3uM = Kh, which follows from setting i = M in
Eq. (17a) and using the fact that uM+1 = −uM as required
by symmetry considerations. Here, we have defined for con-
venience the dimensionless number

K =
P0

4(κ− 1)(1 + δ)
, (24)

where we have used the approximation sinα ' 1/ (1 + δ).
The solution of the resulting linear homogeneous second-
order recurrence problem satisfying the zero-displacement
boundary condition u1 = 0, is given by

ui
h

= − i− 1

N − 1
K . (25)

The maximum displacement occurs for i = M and amounts
to uM = −(M − 1)Kh/(2M − 1).

For κ = 1, the dipolar forces are balanced by the elastic
forces. Consequently, the membrane to linear order primar-
ily undergoes motion along the transverse direction.

We further note that for κ ≤ 1 the elastic forces cannot
stabilize the system as the dipolar attraction overwhelms
the elastic repulsion. Since its ends are fixed, the membrane
would tear itself apart. The steric repulsions in this situation
prevent the collapse of the system.

2. Transverse displacement and dipole orientation

We next consider the displacement field induced along the
transverse direction and examine the rotation of the dipoles.
For 1 < i < M , Eqs. (17b) and (18) are written in the steady
trapping state as

1

h
(ρi+1 − 2ρi + ρi−1)− 1

4
(φi+1 − φi−1) = 0 , (26a)

1

h
(ρi+1 − ρi−1)− 1

3
(φi+1 + 4φi + φi−1) = 0 . (26b)

For the solution of the coupled recurrence relations at
hand, it is convenient to rearrange the equations in such
a way as to decouple the transverse displacement from the
dipole orientation. To that end, we define the displacement
gradient as Di = (ρi − ρi−1)/h. Accordingly, Eqs. (26) can
be rewritten as

Di+1 −Di =
1

4
(φi+1 − φi−1) , (27a)

Di+1 +Di =
1

3
(φi+1 + 4φi + φi−1) . (27b)
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Then, Eqs. (27) can be rearranged to obtain

Di =
2

3
φi−1 +

7φi + φi−2
24

=
2

3
φi +

7φi−1 + φi+1

24
. (28)

The latter equation can further be rearranged to obtain
the following recurrence relation for the orientation field,

φi+1 − φi−2 + 9 (φi − φi−1) = 0 . (29)

In order to solve the resulting linear homogeneous third-
order recurrence problem and find the general term of φi, we
use the classical approach based on the distinct roots theo-
rem139. Correspondingly, we search for solutions of the re-
currence relation in the form of φi = c/pi. Substituting into
Eq. (29) yields the characteristic equation of the recurrence
problem,

p3 + 9p2 − 9p− 1 = 0 , (30)

the solutions of which, often called the characteristic roots
of the recurrence relation, are p = 1 and p± := −5 ± 2

√
6.

Then, the general solution for the orientation field is given
by

φi = C + C−p
i
− + C+p

i
+ , (31)

where the constants C± and C are to be determined from
the boundary conditions. We note that p+ and p− are the
multiplicative inverse of each other, i.e., p+p− = 1.

Upon substitution of the expression of the orientation field
given by Eq. (31) into Eq. (28), the general solution for the
displacement gradient is obtained as

Di = C + C−

(
−1 +

√
6
2

)
pi− + C+

(
−1−

√
6
2

)
pi+ . (32)

For the determination of the three unknown coefficients
C and C±, we make use of the boundary conditions,

3D2 − (φ2 + 2φ1) = 0 , (33a)

DM −
1

4
(φM + φM−1) =

P0

2
, (33b)

DM − φM −
φM−1

3
= 0 , (33c)

after noting that ρM+1 = ρM and φM+1 = −φM . Here,
P0 = µF0h/A is the dimensionless parameter defined earlier
in Eq. (15).

Next, from Eqs. (31) through (33), the unknown coeffi-
cients are determined as

C = −W
(

12QM−1 + 117QM +
√

6 (5SM−1 + 48SM )
)
,

C± = W
(
±12 + 5

√
6
)
,

where we have defined

Si = pi+ + pi− , Qi = pi+ − pi− . (34)

Moreover, W = P0/
(
3QM +

√
6SM

)
.

The transverse displacement field of the ith membrane
particle can then be calculated from the displacement gra-
dient as

ρi = h

j=i∑
j=2

Dj , (35)

which, using ρ1 = 0, reads

ρi
h

= (i− 1)C + C−

(
−1 + 5

√
6

12

)(
49 + 20

√
6− pi+1

−

)
+ C+

(
1 + 5

√
6

12

)(
−49 + 20

√
6 + pi+1

+

)
. (36)

In the limit of M → ∞ (and thus h → 0 for fixed L),
we get C = P0 and C− = C+ = 0. Defining a continuum
variable as x/L = ((i− 1)/(M − 1)− 1) /2 for 1 ≤ i ≤ M
such that x/L ∈ [−1/2, 0), Eq. (36) can be written in the
continuum limit, for x notably smaller than zero, as

lim
M→∞

φ(x) = P0 , (37a)

lim
M→∞

ρ(x) = P0

(
L

2
+ x

)
. (37b)

It is worth mentioning that our approximation is valid
in the small deformation regime for which P0 � 1. From
parity considerations, it follows that φ(−x) = −φ(x) and
ρ(−x) = ρ(x). Thus, the transverse displacement reaches
its maximum value at the membrane center, for x = 0.

In the following, we will approach the problem differently
by utilizing a continuum description of the governing equa-
tions to yield analytical expressions for the membrane defor-
mation not only in the steady state, but also in the transient
state.

B. Continuum description

In order to obtain a continuum description of the mem-
brane deformation and dipole orientations, we present
the transverse displacement field in the form ρi+s =
exp(shD)ρ(x), and analogously for ui+s and φi+s, wherein s
is a relative integer, and D := ∂/∂x denotes the differential
operator with respect to the spatial coordinate. Expand-
ing the exponential argument in powers of shD, we obtain
for ρi+s up to second order140

ρi+s =

(
1 + sh

∂

∂x
+

(sh)2

2

∂2

∂x2
+ . . .

)
ρ(x) , (38)

and analogously expressions for ui+s and φi+s.

Using this representation, Eqs. (17) can be written in the
continuum limit as

u,t = 2A (κ− 1)u,xx , (39a)
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ρ,t = A

(
ρ,xx −

φ,x
2

)
+ µ

(
F0 −

yP,t
µP

)
h δ(x) , (39b)

for −L/2 ≤ x ≤ L/2. Here, commas in the subscripts de-
note partial derivative with respect to the arguments listed
in the subscripts. We have neglected the steric interactions
along the longitudinal direction as they usually have a van-
ishing contribution to the force balance in the trapping state,
during which the membrane is stretched. In addition, the
discrete force Fi = F (δi,M + δi,M+1) has now been trans-
formed into a point force 2Fh δ(x) along the y direction,
where the prefactor h has been introduced so as to ensure
the right physical dimension. Accordingly, α → 0 holds in
the continuum limit, since a → 0 leads to δ → ∞ for R
remaining finite. Thus the longitudinal component of the
force F‖ vanishes.

Similarly, the continuum version of the equation governing
the orientation dynamics of the dipoles, given in a discrete
form by Eq. (18), reads

φ,t = B (ρ,x − φ) . (40)

Eqs. (39) and (40) are subject to the initial conditions at
t = 0 of vanishing displacement and orientation, in addition
to the boundary conditions of zero displacement and torque
at x = ±L/2. It is worth mentioning that A and B are
considered here as constant membrane properties and are
therefore not affected by the limit h→ 0.

1. Steady state

We first look for analytical solutions of the continuum
model equations in the steady state of motion. It follows
from Eq. (39a) that the steady longitudinal displacement in
the trapping state satisfies u,xx = 0. Since u(x = 0) = 0,
as required by symmetry considerations, the longitudinal
displacement necessarily vanishes upon application of the
boundary conditions. Therefore, the membrane particles
only displace along the y direction in the considered con-
tinuum limit.

As for the transverse displacement, Eq. (39b) simplifies in
the steady state to

ρ,xx −
φ,x
2

+ P0 δ(x) = 0 , (41)

while Eq. (40) leads to φ = ρ,x. As a result, the steady
orientation of the dipoles is solely given by the displacement
gradient. The present situation is analogous to that known
in the context of Kirchhoff–Love theory of elastic beams or
plates141. Thus, the transverse displacement of the contin-
uous membrane is governed by the following second-order
differential equation,

ρ,xx + 2P0 δ(x) = 0 , (42)

the solution of which (that satisfies the boundary conditions)

is given by

ρ(x) = P0

(
L

2
− |x|

)
, (43a)

φ(x) = −P0 sgn(x) , (43b)

where sgn(x) := x/|x| denotes the sign function. These re-
sults are in full agreement with Eqs. (37) that have been
obtained for x < 0 by taking the corresponding continuum
limit in the discrete description.

The membrane undergoes a maximum deformation at its
center, which, for h = L/N and h/a = 27/6, is given by

ρMax

L
=
P0

2
= 4πc

a4F0

µ0m2
, (44)

where c = 25/3/3 ≈ 1.06 is a numerical prefactor. The latter
result indicates that the maximum deflection of the mem-
brane scales linearly with the magnitude of the active force
but does not depend on the nature of the steric interactions
causing the membrane to deform.

In Fig. 5, we present the steady-state profiles of (a) the
transverse displacement ρ(x) and (b) the orientation φ(x)
for various values of E2, while keeping the other parameters
constant at E1 = 1 and N = 20. Here, the numerical so-
lutions of the nonlinear equations are indicated by circles,
and the results of the corresponding recurrence solution of
the linear discrete problem – closely matching the numerical
solution – are denoted by squares. Solid lines present the
continuum solutions for the same set of parameters.

While the continuum description always leads to ideal tri-
angular and, respectively, square profiles for ρ(x) and φ(x),
the numerical solution of the nonlinear problem shows devi-
ations from these shapes. The differences are most probably
due to the finite size of the active particle which has not been
taken into account in the present continuum description. Fi-
nally, we remark that even though no fitting parameters have
been introduced, the results still closely match each other,
reinforcing the applicability of our approximate analytical
approach to predict the shape of our minimal membrane
model under the influence of a localized destroying force.

2. Transient behavior

Having presented analytical solutions of the continuum
equations of motion in the steady state, assessed the appro-
priateness and judged the accuracy of our linearized analyt-
ical theory, we next address the membrane deformation and
dipole orientation in the transient regime. The solution to
this mathematical problem can be obtained by finite Fourier
transforms in space of the governing equations, and solving
the resulting ordinary differential equations in time.

For this purpose, we define the basis functions

cq(x) = cos (Hqx) , sq(x) = sin (Hqx) , (45)

where Hq = (2q − 1)π/L with q = 1, 2, . . . denoting the
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Figure 5. (Color online) Steady-state solutions in the trapping
state. (a) Scaled membrane deformation ρ/L, and (b) local mem-
brane orientation φ as functions of x (the self-driven particle is
located at x = 0), both for systems with E1 = 1, N = 20, and
varying values of E2. Circles indicate the results of numerical
simulations obtained by solving the nonlinear dynamical equa-
tions, rectangles denote the solutions of the recurrence problem
given by Eqs. (31) and (36), and solid lines are the analytical
predictions described by Eqs. (43) obtained from a continuum
formulation. All these approaches lead to triangular profiles for
ρ(x) and square-like ones for φ(x), showing strong quantitative
agreement without the introduction of any fitting parameters.

variable that sets the coordinates in Fourier space. Then
the displacement and orientation fields can be expressed in
terms of Fourier series in space as142

ρ(x, t) =
2

L

∑
q≥1

ρ̂(q, t) cq(x) , (46a)

φ(x, t) =
2

L

∑
q≥1

φ̂(q, t) sq(x) , (46b)

where ρ̂ and φ̂ are the Fourier coefficients, defined as

ρ̂(q, t) =

∫ L
2

−L
2

ρ(x, t) cq(x) dx , (47a)

φ̂(q, t) =

∫ L
2

−L
2

φ(x, t) sq(x) dx . (47b)

The form of the Fourier representation given by Eqs. (46)
follows from the boundary conditions to ensure at any time
that ρ(±L/2, t) = 0 and φ,x(±L/2, t) = 0. We note that
the basis functions cq(x) and sq(x) satisfy the orthogonality
relations∫ L

2

−L
2

cp(x)cq(x) dx =

∫ L
2

−L
2

sp(x)sq(x) dx =
L

2
δpq. (48)

Transforming Eqs. (39b) and (40) into spatial Fourier
space yields

ρ̂,t
A

= −Hq

(
Hqρ̂+

φ̂

2

)
+ P0

(
1− yP,t

v0

)
, (49a)

φ̂,t
B

= −Hqρ̂− φ̂ , (49b)

where v0 = µPF0 is the bulk velocity of the active particle.

For a closure of the above set of equations, we require that
the instantaneous distance between the self-driven particle
and the membrane center remains constant during the sys-
tem evolution, such that yP,t = ρ,t(x = 0, t). However, in or-
der to be able to make analytical progress, we further assume
that after a brief transient evolution, |yP,t| � v0 holds, and
thus the term involving yP,t can be neglected. This is equiv-
alent to assuming that the active particle instantaneously
attains its terminal velocity when the interaction with the
membrane takes place.

The solution of the system of differential equations given
by Eqs. (49) can more easily be obtained using the Laplace
transform technique143. In the following, the Laplace-
transformed function pairs are distinguished only by their
argument while the hat is reserved to denote the spatial
Fourier transforms. By employing the initial conditions

ρ̂(q, t = 0) = φ̂(q, t = 0) = 0, we obtain

s

A
ρ̂(q, s) = −Hq

(
Hqρ̂(q, s) +

φ̂(q, s)

2

)
+
P0

s
, (50a)

s

B
φ̂(q, s) = −Hqρ̂(q, s)− φ̂(q, s) . (50b)

Solving these equations for ρ̂(q, s) and φ̂(q, s) yields

ρ̂(q, s) =
2A(B + s)P0

Q
, (51a)

φ̂(q, s) = −2HqABP0

Q
, (51b)
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where the denominator is given by

Q = s
(
2s2 + 2(B +AH2

q )s+ABH2
q

)
.

The inverse Laplace transform can readily be obtained
from the standard approach of partial fraction decomposi-
tion and using tables of Laplace transforms, which yields

ρ̂(q, t) =
2P0

H2
q

(
1− e−βt

(
cosh (τt) +

B

2τ
sinh (τt)

))
,

φ̂(q, t) = −2P0

Hq

(
1− e−βt

(
cosh(τt) +

β

τ
sinh(τt)

))
,

where we have defined the parameters τ and β, with inverse
time dimension, as

τ =
1

2

√
B2 +A2H4

q , β =
1

2

(
B +AH2

q

)
. (52)

A typical transient behavior is shown in Fig. 6 present-
ing (a) the membrane transverse displacement ρ(x, t) and
(b) the dipole orientation φ(x, t) at various times t using the
parameters E1 = 1, E2 = 10−2, and N = 20. Here, sym-
bols indicate the numerical solutions for a discrete mem-
brane, and solid lines represent the analytical solutions of
the continuum theory outlined above. Again, without fit-
ting parameters, there is strong qualitative and quantitative
agreement between both approaches.

The transverse displacement profile features at early times
a small central dent, which then more and more expands as
time evolves. This leads to a significant kink at the cen-
ter and, finally, to the triangular shape in the steady state.
At all times, the symmetry ρ(−x, t) = ρ(x, t) is fulfilled.
Similarly, for the dipole orientation, smooth transitions take
place from a small “orientation jump” in the center and van-
ishing initial orientations elsewhere to a full-chain square-like
profile in the steady state. The discrete case features a sig-
nificantly less pronounced change in orientation for the two
central spheres at all times.

Finally, we address the transient behavior in the particular
situation of fast orientational relaxation, for whichB � Aq2.
Setting φ,t = 0 in Eq. (40) yields

φ = ρ,x . (53)

Accordingly, the dipole orientation follows instantaneously
the slope of the membrane. Inserting Eq. (53) into Eq. (39b)
yields

ρ,t =
A

2
ρ,xx + µhF0 δ(x) , (54)

where yP,t has been neglected along the same lines as above.

Eq. (54) has the form of a diffusion equation with a point
source localized in space, subject to the initial condition
ρ(x, t = 0) = 0, in addition to the Dirichlet-type boundary
conditions ρ(x = ±L/2, t) = 0. The solution of this equation
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t/tS = 0.001
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Figure 6. (Color online) Dynamic solutions for the trapping
scenario. (a) Scaled transient membrane deformation profile
ρ(x, t)/L and (b) membrane orientation profile φ(x, t) calculated
at times t/tS = 0.001, 0.05, 10, where tS = ηL3/ε for N = 20,
E1 = 1, and E2 = 10−2. Here, symbols are numerical simulation
results, and solid lines give the corresponding analytical results
given by Eqs. (46). Both approaches show qualitative and quan-
titative agreement in their description of the transition from the
small central perturbations at early times to the steady state for
t→ ∞ (also see Fig. 5 for a detailed display of the latter).

has been obtained by Sommerfeld144 and is expressed as

ρ(x, t) =
AP0

2L

t∫
0

(
ϑ

(
x

2L
, t′
)
− ϑ

(
x+ L

2L
, t′
))

dt′ , (55)

with Jacobi theta functions145

ϑ(ξ, t) = 1 + 2

∞∑
n=1

e−δnt cos (2nπξ) , (56)

where we have defined

δn =
n2π2A

2L2
. (57)
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This leads to the scaled displacement

ρ(x, t)

L
=

4P0

π2

∞∑
n=1

1− e−δ2n−1t

(2n− 1)2
cos
(

(2n− 1)
πx

L

)
, (58)

which reproduces the steady-state solution given by Eq. (36)
as shown below. In particular, the long-time behavior is
dominated by the first term (n = 1), which approaches
the limit exponentially with a characteristic decay time
2L2/(π2A). Additionally, the orientation follows forthwith
from Eq. (53) as

φ(x, t) = −4P0

π

∞∑
n=1

1− e−δ2n−1t

2n− 1
sin
(

(2n− 1)
πx

L

)
. (59)

In the limit t→∞, we obtain

lim
t→∞

ρ(x, t)

L
=

4P0

π2

∞∑
n=1

cos
(
(2n− 1)πxL

)
(2n− 1)2

, (60a)

lim
t→∞

φ(x, t) = −4P0

π

∞∑
n=1

sin
(
(2n− 1)πxL

)
2n− 1

, (60b)

which correspond, respectively, to the Fourier series repre-
sentation of the triangle and square waves functions of fre-
quency 2π/L. The maximum membrane displacement is cal-
culated as

lim
t→∞

ρ(0, t)

L
=

4P0

π2

∞∑
n=1

1

(2n− 1)2
=
P0

2
, (61)

in agreement with the result obtained earlier from the steady
differential equations, as given by Eq. (44).

VI. CONCLUSIONS

In this article we explored the interactions between an
active particle and a minimal model membrane. Since we
concentrate on a two-dimensional setup, our results could,
for instance, in experiments be readily compared with the
behavior of a self-driven particle on a substrate and collid-
ing with a straightened chain of mutually attractive dipolar
spheres. We demonstrated that the particle may either get
trapped by the membrane or penetrate through it, where the
membrane can either be permanently damaged or recover by
self-healing. State diagrams are presented that carefully map
out which state occurs as a function of only a few generic
parameters; membrane elasticity, bending stiffness, strength
and size of the active particle. Our analytical theory further
predicts the shape and the dynamics of the membrane, in
close quantitative agreement with our numerical simulations.
Our results suggest that the microscopic details of the inter-
actions among membrane components (particles) are largely
insignificant to the overall behavior of the membrane. Thus,
our results might be broadly applicable to describe experi-
ments of micro-swimmers interacting with membranes, such

as synthetic microbots colliding with a lipid bilayer, or mi-
crobes with a membrane synthesized from dipolar micropar-
ticles. In this context, it would be interesting to extend our
model to account for Brownian noise acting on the mem-
brane and the self-driven particle as well. This might, for
instance, support the membrane in healing after being de-
stroyed by the penetrating active particle.
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netic balls: From chains to tubes,” Phys. Rev. E 89, 011202 (2014).
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