99 research outputs found

    What's in the box? Exploring UK players' experiences of loot boxes in games; the conceptualisation and parallels with gambling.

    Get PDF
    Loot boxes are a popular mechanic within many video games, but it remains unclear if some forms of loot boxes can be seen of as gambling. However, the perspectives of players are often neglected, such as whether they see them as 'fair' game elements and how closely they feel this aligns with gambling. In this paper, we synthesise a conceptualisation for loot boxes through players' actual experience and explore if there are any parallels with gambling. Twenty-one participants who played video games took part in the research through either an interview or online survey. Thematic analysis suggested that six themes were core to exploring loot boxes: Random Chance Effects, Attitudes Towards Content, Implementation, Parallels with Gambling, Game Design, and The Player. The results suggested both indirect and direct parallels with gambling from the players experiences. Implications of game design and classifying loot boxes as gambling are discussed in relation to game design and risk factors of gambling and purchasing behaviour

    Magnetoluminescence

    Full text link
    Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain regions where the electromagnetic energy density greatly exceeds the plasma energy density. These sources exhibit dramatic flaring activity where the electromagnetic energy distributed over large volumes, appears to be converted efficiently into high energy particles and gamma-rays. We call this general process magnetoluminescence. Global requirements on the underlying, extreme particle acceleration processes are described and the likely importance of relativistic beaming in enhancing the observed radiation from a flare is emphasized. Recent research on fluid descriptions of unstable electromagnetic configurations are summarized and progress on the associated kinetic simulations that are needed to account for the acceleration and radiation is discussed. Future observational, simulation and experimental opportunities are briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews serie

    The IMF in Starbursts

    Full text link
    The history of the IMF in starburst regions is reviewed. The IMFs are no longer believed to be top-heavy, although some superstar clusters, whether in starburst regions or not, could be. General observations of the IMF are discussed to put the starburst results in perspective. Observed IMF variations seem to suggest that the IMF varies a little with environment in the sense that denser and more massive clusters produce more massive stars, and perhaps more brown dwarfs too, compared to intermediate mass stars.Comment: 8 pages, to be published in ``Starbursts: from 30 Doradus to Lyman Break Galaxies,'' held at Institute of Astronomy, Cambridge University, UK, September 6-10, 2004. Kluwer Academic Publishers, edited by Richard de Grijs and Rosa M. Gonzalez Delgad

    Cluster Density and the IMF

    Full text link
    Observed variations in the IMF are reviewed with an emphasis on environmental density. The remote field IMF studied in the LMC by several authors is clearly steeper than most cluster IMFs, which have slopes close to the Salpeter value. Local field regions of star formation, like Taurus, may have relatively steep IMFs too. Very dense and massive clusters, like super star clusters, could have flatter IMFs, or inner-truncated IMFs. We propose that these variations are the result of three distinct processes during star formation that affect the mass function in different ways depending on mass range. At solar to intermediate stellar masses, gas processes involving thermal pressure and supersonic turbulence determine the basic scale for stellar mass, starting with the observed pre-stellar condensations, and they define the mass function from several tenths to several solar masses. Brown dwarfs require extraordinarily high pressures for fragmentation from the gas, and presumably form inside the pre-stellar condensations during mutual collisions, secondary fragmentations, or in disks. High mass stars form in excess of the numbers expected from pure turbulent fragmentation as pre-stellar condensations coalesce and accrete with an enhanced gravitational cross section. Variations in the interaction rate, interaction strength, and accretion rate among the primary fragments formed by turbulence lead to variations in the relative proportions of brown dwarfs, solar to intermediate mass stars, and high mass stars.Comment: 14 pages, 3 figures, to be published in ``IMF@50: A Fest-Colloquium in honor of Edwin E. Salpeter,'' held at Abbazia di Spineto, Siena, Italy, May 16-20, 2004. Kluwer Academic Publishers; edited by E. Corbelli, F. Palla, and H. Zinnecke

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio

    Observation of inverse Compton emission from a long γ-ray burst.

    Get PDF
    Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1-6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7-9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
    corecore