74 research outputs found

    Equity, diversity, and inclusion at the Global Alliance for Genomics and Health

    Get PDF
    A lack of diversity in genomics for health continues to hinder equitable leadership and access to precision medicine approaches for underrepresented populations. To avoid perpetuating biases within the genomics workforce and genomic data collection practices, equity, diversity, and inclusion (EDI) must be addressed. This paper documents the journey taken by the Global Alliance for Genomics and Health (a genomics-based standard-setting and policy-framing organization) to create a more equitable, diverse, and inclusive environment for its standards and members. Initial steps include the creation of two groups: the Equity, Diversity, and Inclusion Advisory Group and the Regulatory and Ethics Diversity Group. Following a framework that we call "Reflected in our Teams, Reflected in our Standards," both groups address EDI at different stages in their policy development process. [Abstract copyright: © 2023 The Author(s).

    Characterisation of aerotolerant forms of a robust chicken colonizing Campylobacter coli

    Get PDF
    Campylobacter contaminated poultry meat is a major source of human foodborne illness. Campylobacter coli strain OR12 is a robust colonizer of chickens that was previously shown to outcompete and displace other Campylobacter strains from the chicken’s gastrointestinal tract. This strain is capable of aerobic growth on blood agar. Serial aerobic passage increased this aerotolerance as assessed by quantitative assays for growth and survival on solid media. Aerotolerance was also associated with increased peroxide stress resistance. Aerobic passage did not alter cellular morphology or motility or hinder the microaerobic growth rate. Colonization of broiler chickens by aerotolerant C. coli OR12 was significantly lower than the wild-type strain at 3 days after challenge but not by 7 days, suggesting adaptation had occurred. Bacteria recovered from chickens had retained their aerotolerance, indicating this trait is stable. Whole genome sequencing enabled comparison with the wild-type sequence. Twenty-three point mutations were present, none of which were in genes known to affect oxidative stress resistance. Insertions or deletions caused frame shifts in several genes including, phosphoglycerate kinase and the b subunit of pyruvate carboxylase that suggest modification of central and carbohydrate metabolism in response to aerobic growth. Other genes affected include those encoding putative carbonic anhydrase, motility accessory factor, filamentous haemagglutinin, and aminoacyl dipeptidase proteins. Aerotolerance has the potential to affect environmental success and survival. Increased environmental survival outside of the host intestinal tract may allow opportunities for transmission between hosts. Resistance to oxidative stress may equate to increased virulence by virtue of reduced susceptibility to oxidative free radicals produced by host immune responses. Finally, resistance to ambient atmospheric oxygen may allow increased survival on chicken skin, and therefore constitutes an increased risk to public health

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    Characterisation of a haemagglutinin from Haemophilus paragallinarum

    No full text

    Ablative Surgery Versus Sclerotherapy in the Treatment of Vein Disease

    No full text

    Tae early diagnosis of eancer of tiae fundus, with report of sases.

    No full text
    LEIDSSTELSELOPLADEN-RUG0

    Molecular analysis of a haemagglutinin of Haemophilus paragallinarum

    No full text
    The gene encoding a haemagglutinin of H. paragallinarum, hagA, has been identified and the full-length nucleotide sequence determined. A ∼ 39 kDa protein, recognized by an anti-haemagglutinin monoclonal antibody, mAb4D, was purified from H. paragallinarum strain 0083 and the N-terminal sequence obtained. The full-length nucleotide sequence was obtained by inverse PCR and the deduced amino acid sequence of the protein encoded was shown to be similar to other outer-membrane protein of closely related organisms in the HAP group (Haemophilus, Actinobacillus, Pasteurella), especially the P5 protein of Haemophilus influenzae. The hagA gene was cloned into a His-tag expression vector and overexpressed in Escherichia coli strain M15(pREP4). The identity of the purified recombinant protein as a H. paragallinarum haemagglutinin was confirmed by haemagglutination of chicken red blood cells and reactivity, in a Western blot, with the monoclonal antibody specific for the serovar A haemagglutinin
    • …
    corecore