122 research outputs found

    Successful treatment of fusarium solani ecthyma gangrenosum in a patient affected by leukocyte adhesion deficiency type 1 with granulocytes transfusions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecthyma gangrenosum (EG) manifests as a skin lesion affecting patients suffering extreme neutropenia and is commonly associated with <it>Pseudomonas aeruginosa </it>in immunocompromised patients. Leukocyte adhesion deficiency I (LAD I) which count among primary immunodeficiency syndromes of the innate immunity, is an autosomal recessive disorder characterized in its severe phenotype by a complete defect in CD18 expression on neutrophils, delayed cord separation, chronic skin ulcers mainly due to recurrent bacterial and fungal infections, leucocytosis with high numbers of circulating neutrophils and an accumulation of abnormally low number of neutrophils at sites of infection.</p> <p>Case Presentation</p> <p>We report at our knowledge the first case of a child affected by LAD-1, who experienced during her disease course a multi-bacterial and fungal EG lesion caused by <it>fusarium solani</it>. Despite targeted antibiotics and anti-fungi therapy, the lesion extended for as long as 18 months and only massive granulocytes pockets transfusions in association with G-CSF had the capacity to cure this lesion.</p> <p>Conclusion</p> <p>We propose that granulocytes pockets transfusions will be beneficial to heal EG especially in severely immunocompromised patients.</p

    An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem

    Get PDF
    The flexible job shop scheduling problem (FJSP) is vital to manufacturers especially in today’s constantly changing environment. It is a strongly NP-hard problem and therefore metaheuristics or heuristics are usually pursued to solve it. Most of the existing metaheuristics and heuristics, however, have low efficiency in convergence speed. To overcome this drawback, this paper develops an elitist quantum-inspired evolutionary algorithm. The algorithm aims to minimise the maximum completion time (makespan). It performs a global search with the quantum-inspired evolutionary algorithm and a local search with a method that is inspired by the motion mechanism of the electrons around an atomic nucleus. Three novel algorithms are proposed and their effect on the whole search is discussed. The elitist strategy is adopted to prevent the optimal solution from being destroyed during the evolutionary process. The results show that the proposed algorithm outperforms the best-known algorithms for FJSPs on most of the FJSP benchmarks

    Human Cellular Immune Response to the Saliva of Phlebotomus papatasi Is Mediated by IL-10-Producing CD8+ T Cells and Th1-Polarized CD4+ Lymphocytes

    Get PDF
    Cutaneous leishmaniasis affects millions of people worldwide and is caused by protozoa of the genus Leishmania. The parasite is transmitted during sand fly bites. While probing the skin for a blood meal, vectors salivate into the host's skin. Sand fly saliva contains several components that increase hemorrhage and interfere with the host's inflammatory response. Data obtained in mice originally indicate that immunization against saliva protected from leishmaniasis supporting possibility that leishmaniasis could be prevented by a vaccine based on sand fly saliva. Herein we investigated the nature and the importance of the cellular immune response developed against sand fly saliva by individuals at risk of cutaneous leishmaniasis due to Leishmania major. We demonstrated that the immunity against saliva is dominated by the activation of lymphocytes producing a suppressive cytokine called IL-10. These data may preclude the protective effect of sand fly saliva pre-exposure in humans. Further experiments revealed that the production of IL-10 masked the presence of a second kind of lymphocytes producing IFN-γ, a rather protective cytokine. The latter finding highlights the importance of the identification of the proteins activating the latter lymphocytes in order to develop vaccines based on selected proteins from the saliva of sand flies

    Patients with primary immunodeficiencies are a reservoir of poliovirus and a risk to polio eradication

    Get PDF
    ABSTARCT: Immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) have been isolated from primary immunodeficiency (PID) patients exposed to oral poliovirus vaccine (OPV). Patients may excrete poliovirus strains for months or years; the excreted viruses are frequently highly divergent from the parental OPV and have been shown to be as neurovirulent as wild virus. Thus, these patients represent a potential reservoir for transmission of neurovirulent polioviruses in the post-eradication era. In support of WHO recommendations to better estimate the prevalence of poliovirus excreters among PIDs and characterize genetic evolution of these strains, 635 patients including 570 with primary antibody deficiencies and 65 combined immunodeficiencies were studied from 13 OPV-using countries. Two stool samples were collected over 4 days, tested for enterovirus, and the poliovirus positive samples were sequenced. Thirteen patients (2%) excreted polioviruses, most for less than 2 months following identification of infection. Five (0.8%) were classified as iVDPVs (only in combined immunodeficiencies and mostly poliovirus serotype 2). Non-polio enteroviruses were detected in 30 patients (4.7%). Patients with combined immunodeficiencies had increased risk of delayed poliovirus clearance compared to primary antibody deficiencies. Usually, iVDPV was detected in subjects with combined immunodeficiencies in a short period of time after OPV exposure, most for less than 6 months. Surveillance for poliovirus excretion among PID patients should be reinforced until polio eradication is certified and the use of OPV is stopped. Survival rates among PID patients are improving in lower and middle income countries, and iVDPV excreters are identified more frequently. Antivirals or enhanced immunotherapies presently in development represent the only potential means to manage the treatment of prolonged excreters and the risk they present to the polio endgame. Keywords: Poliovirus eradication, Immunodeficiency-associated vaccine-derived polioviruses, Oral poliovirus vaccine, Humoral immunodeficiency, Combined immunodeficiency, Primary immunodeficienc

    Biotechnological Perspective of Reactive Oxygen Species (ROS)-Mediated Stress Tolerance in Plants

    Get PDF
    All environmental cues lead to develop secondary stress conditions like osmotic and oxidative stress conditions that reduces average crop yields by more than 50% every year. The univalent reduction of molecular oxygen (O2) in metabolic reactions consequently produces superoxide anions (O2•−) and other reactive oxygen species (ROS) ubiquitously in all compartments of the cell that disturbs redox potential and causes threat to cellular organelles. The production of ROS further increases under stress conditions and especially in combination with high light intensity. Plants have evolved different strategies to minimize the accumulation of excess ROS like avoidance mechanisms such as physiological adaptation, efficient photosystems such as C4 or CAM metabolism and scavenging mechanisms through production of antioxidants and antioxidative enzymes. Ascorbate-glutathione pathway plays an important role in detoxifying excess ROS in plant cells, which includes superoxide dismutase (SOD) and ascorbate peroxidase (APX) in detoxifying O2•−radical and hydrogen peroxide (H2O2) respectively, monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) involved in recycling of reduced substrates such as ascorbate and glutathione. Efficient ROS management is one of the strategies used by tolerant plants to survive and perform cellular activities under stress conditions. The present chapter describes different sites of ROS generation and and their consequences under abiotic stress conditions and also described the approaches to overcome oxidative stress through genomics and genetic engineering

    An enigma in the genetic responses of plants to salt stresses

    Get PDF
    Soil salinity is one of the main factors restricting crop production throughout the world. Various salt tolerance traits and the genes controlling these traits are responsible for coping with salinity stress in plants. These coping mechanisms include osmotic tolerance, ion exclusion, and tissue tolerance. Plants exposed to salinity stress sense the stress conditions, convey specific stimuli signals, and initiate responses against stress through the activation of tolerance mechanisms that include multiple genes and pathways. Advances in our understanding of the genetic responses of plants to salinity and their connections with yield improvement are essential for attaining sustainable agriculture. Although a wide range of studies have been conducted that demonstrate genetic variations in response to salinity stress, numerous questions need to be answered to fully understand plant tolerance to salt stress. This chapter provides an overview of previous studies on the genetic control of salinity stress in plants, including signaling, tolerance mechanisms, and the genes, pathways, and epigenetic regulators necessary for plant salinity tolerance

    Multiagent architecture for online diagnosis of discrete event systems using causal temporal signature approach

    No full text
    International audienc

    Utility-Based Approach to Represent Agents’ Conversational Preferences

    No full text

    Line mixing effect in the ν<SUB>2</SUB> band of CH<SUB>3</SUB>Br

    No full text
    International audienceLine intensities, self broadening coefficients, as well as line mixing parameters and self-shift coefficients have been measured in the ν2 parallel band of CH3Br at room temperature for 38 rovibrational doublets with rotational quantum numbers 4≤J≤47 and K=0, 1. Measurements were made in the P and R branches located in the spectral range from 1260 to 1332 cm-1 using high-resolution Fourier transform spectra. These spectroscopic parameters have been retrieved from twelve spectra recorded at different pressures of pure CH3Br from 0.2 to 6.8 Torr. The spectra have been analyzed using a multi-pressure non-linear least squares fitting of Rosenkranz profile taking into account line mixing effect. These spectra and results of pressure broadening coefficients and line intensities obtained with and without taking into account line mixing effect are compared, analyzed and discussed as function of the rotational quantum numbers and the branch. Analyzing of overlapped lines demonstrates an important mixing effect between the doublets components. On average the values of these spectroscopic parameters obtained when taking into account line mixing were found to be about 5% smaller than those obtained without taking into account this effect. On average, the accuracies of self-broadening coefficients and line intensities are estimated to be better than 3.8%. The mean accuracies of line-mixing and line-shift data are estimated to be about 20% and 17% respectively. The measured line mixing parameters are both positive and negative, while most of the lines have a negative shift coefficient
    corecore