
1

An elitist quantum-inspired evolutionary algorithm for the flexible

job-shop scheduling problem

Xiuli Wu1, Shaomin Wu2*

1School of Mechanical Engineering, University of Science and Technology Beijing, Beijing,

China

2Kent Business School, University of Kent, Canterbury, Kent CT2 7PE, UK

Abstract: The flexible job shop scheduling problem (FJSP) is vital to manufacturers

especially in today’s constantly changing environment. It is a strongly NP-hard problem and

therefore metaheuristics or heuristics are usually pursued to solve it. Most of the existing

metaheuristics and heuristics, however, have low efficiency in convergence speed. To

overcome this drawback, this paper develops an elitist quantum-inspired evolutionary

algorithm. The algorithm aims to minimise the maximum completion time (makespan). It

performs a global search with the quantum-inspired evolutionary algorithm and a local

search with a method that is inspired by the motion mechanism of the electrons around

atomic nucleuses. Three novel algorithms are proposed and their effect on the whole search

is discussed. The elitist strategy is adopted to prevent the optimal solution from being

destroyed during the evolutionary process. The results show that the proposed algorithm

outperforms the best-known algorithms for FJSPs on most of the FJSP benchmarks.

Keywords: Flexible job shop scheduling problem, Quantum-inspired evolutionary

algorithm, Convergence speed, local search

*
Corresponding author. Email: s.m.wu@kent.ac.uk.

Suggested citation: Wu, X., & Wu, S. (2015). An elitist quantum-inspired evolutionary algorithm for

the flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, DOI:

10.1007/s10845-015-1060-6.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30707440?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1. Introduction

Efficiently solving the job shop scheduling problem is vital for many manufacturers in

today’s constantly changing environment (Gen and Lin 2014). It has therefore attracted

considerable researcher for recent decades (see Ho and Tay 2004, Xia et al.2005,

Baykasoglu et al 2004, Xing et al. 2009 for example). The flexible job shop scheduling

problem (FJSP) is an extension of the job shop scheduling problem (JSP). Different from JSP,

FJSP allows operations to be processed on any of available machines. As a result, two new

challenges facing FJSP are (1) to assign each operation to an appropriate machine and (2)

further to schedule the assigned operations on the machine. It has been proved that the

FJSP is strongly NP-hard in 1993 (Brandimarte, 1993). It is therefore natural to look for

heuristics or metaheuristics to search the optimal or near-optimal solutions for FJSP.

The FJSP was first addressed by Brucker and Schlie (1990) and it can be categorised

into two groups: (1) the group aiming at the single objective FJSP and (2) the group aiming

at the multi-objective FJSP.

The single objective FJSP only takes the makespan as the optimization objective. In this

category, the existing heuristic algorithms can be further classified into two sub-categories:

the hierarchical and the integrated. The hierarchical one assigns operations to machines

and then optimises the sequence of the assigned operations on the machines separately,

whereas the integrated one combines the two steps together. The hierarchical algorithms

attempt to solve the difficulty of the FJSP by decomposing a FJSP into a sequence of

sub-problems. Brandimarte (1993) was the first to apply a hierarchical taboo search (TS)

algorithm to solve the FJSP, with an emphasis on the minimum makespan problem. Ho and

Tay (2004) integrated dispatching rules and genetic algorithm to solve the two

sub-problems, respectively. In contrast, the integrated approaches generally achieve better

results (Dauzère-Pérès and Paulli, 1997) although they are much more difficult in

implmentation. Many heuristics and metaheuristics are proposed to solve FJSP, such as the

TS algorithm (Dauzère-Pérès and Paulli ,1997), the greedy algorithm (Mati et al.,2001), the

climbing discrepancy search approach (Hmida et al., 2010), the genetic algorithm (Pezzella

3

et al., 2008, Nagamani et al., 2012), the parallel variable neighborhood search algorithm

(Yazdani et al., 2010), the ant colony optimization algorithm (Xing et al., 2010), the

bi-population based estimation-of-distribution algorithm (Wang et al., 2012), etc..

As for the multi-objective FJSP, the machine load and the maximal total load have been

taken as the optimization objectives as well as makspan. This is to balance the working load

on machines. Following a hierarchical approach, Kacem et al. (2002) adopted a local search

algorithm to select machines and solved the operation scheduling problem with the genetic

algorithm. They aimed to optimise the makespan, total machine load and the maximal load.

Similarly, Xia and Wu (2005) used particle swarm optimisation algorithm to solve the

machine assignment problem and used the simulated annealing algorithm to solve the

operation scheduling problem. Recently, Chen et al. (2012) developed a scheduling

algorithm based on GA. As to the integrated approach, Loukil, et al. (2005) utilised the

simulated annealing algorithm to solve the FJSP. Gao et al. (2008) proposed a genetic

algorithm hybridizing with the variable neighborhood search. Li and Pan (2012) proposed

an effective discrete chemical-reaction optimisation algorithm for solving the FJSP subject

to maintenance activity constraints.

In summary, various methods for solving the FJSP have been proposed in the existing

literature. Nevertheless, an open challenge is how the convergence speed of the search

process can be improved, especially for large-size FJSP. Many heuristics and metaheuristics

spend thousands of iterations before reaching the optimal solution. Such low efficiency may

hamper their practical applications because the production scheduling requires rapid

responses to changing demands. This may be also the reason that so many different

evolutionary algorithms have been developed to solve the FJSP. In this paper, we will

propose an evolutionary algorithm, the quantum-inspired evolutionary algorithm (QEA),

which was originally introduced by Shor (1994), to tackle the FJSP. QEA has found a wide

spectrum of applications in recent years due to its fast convergence speed (see Shor 1994,

Wang et al. 2012a, Lu and Yu 2013, for example). This strength attracts us to use it to solve

the FJSP.

It is noteworthy that, to the best of our knowledge, QEA has not been previously used

4

for FJSP. In this paper, we develop a fast algorithm based on QEA to solve the FJSP. The

global search is performed with the QEA and the local search is performed with a novel

method inspired by the mechanism of the motion of the electrons around an atomic nucleus.

Besides, a new chromosome representation is proposed to enrich the FJSP representation

ways.

The rest of this paper is organised as follows. Section 2 formulates the problem. Section

3 proposes a new algorithm for FJSP. Section 4 shows the experiment results. Section 5

concludes our research.

2. Model Formulation for FJSP

2.1 Notations and assumptions

Some notations are given in Table 1.

Table1 Notations for FJSP formulation

Notations Description

n total number of jobs

m total number of machines

Jj

job index, j=1,2,…n

nj number of operations of job Jj

Mk Machine index, k=1,2,…m

Oij i-th operation of job Jj

pijk processing time of the operation Oij on machine Mk

Sij set of available machines for the operation Oij

Cij

 completion time of operation Oij

Cmax The makespan

𝑋𝑖𝑗𝑘 Xijk=1 if machine Mk is selected for operation Oij, Xijk=0 otherwise

𝑌ℎ𝑔𝑖𝑗
= {

−1 𝑂ℎ𝑔 is executed immediately before 𝑂𝑖𝑗

 0 𝑂ℎ𝑔 and 𝑂𝑖𝑗 is nonadjacent on machine 𝑀𝑘

 1 𝑂ℎ𝑔 is executed immediately after 𝑂𝑖𝑗

𝑔𝑎𝑝 idle time interval between two adjacent operations

5

Assumptions are set as following.

(1) All jobs and machines are available at time 0.

(2) Jobs have no associated priority.

(3) At a time point, a machine cannot perform more than one operation.

(4) The value pijk is given in advance.

(5) Setup time for each operation is negligible.

(6) Non-preemptive. An operation must be completed without interruption once started.

(7) Jobs are available for processing on a next machine immediately after completing

processing on the previous machine.

2.2 Model Formulation

The single objective FJSP can be defined as follows. There are n jobs indexed by J= (J1, J2,…,

Jn) to be processed on m machines. Job Jj comprises nj operations to be executed one after

another according to a pre-specified sequence. More than one machine (Sij) is available for

each operation Oij. The ith operation of job Jj can be processed by machine Mk from the m

machines (Oijk) and occupies the machine Mk for pijk

time units. The scheduling problem is to

assign operations to machines in an appropriate way and to schedule the job operations to

optimise makespan subject to the above assumptions.

We formulate the FJSP based on the recommendation from Demir and Kürşat Işleyen

(2013).

The objective: min 𝐶𝑚𝑎𝑥 = min (max (𝐶𝑖𝑗))

 (1)

s.t.

𝐶𝑖𝑗 − 𝐶(𝑖−1)𝑗 ≥ 𝑝𝑖𝑗𝑘𝑋𝑖𝑗𝑘 𝑖 = 2,3, … , 𝑛𝑗 (2)

(𝐶𝑖𝑗 − 𝐶ℎ𝑔 − 𝑝𝑖𝑗𝑘)𝑋ℎ𝑔𝑘𝑋𝑖𝑗𝑘 (
𝑌ℎ𝑔𝑖𝑗

2
) (𝑌ℎ𝑔𝑖𝑗 − 1) + (𝐶ℎ𝑔 − 𝐶𝑖𝑗 − 𝑝ℎ𝑔𝑘)𝑋ℎ𝑔𝑘𝑋𝑖𝑗𝑘 (

𝑌ℎ𝑔𝑖𝑗

2
) (𝑌ℎ𝑔𝑖𝑗 +

1) ≥ 0

 (3)

𝑔𝑎𝑝 =

(𝐶𝑖𝑗 − 𝐶ℎ𝑔 − 𝑝𝑖𝑗𝑘)𝑋ℎ𝑔𝑘𝑋𝑖𝑗𝑘 (
𝑌ℎ𝑔𝑖𝑗

2
) (𝑌ℎ𝑔𝑖𝑗 − 1) + (𝐶ℎ𝑔 − 𝐶𝑖𝑗 − 𝑝ℎ𝑔𝑘)𝑋ℎ𝑔𝑘𝑋𝑖𝑗𝑘 (

𝑌ℎ𝑔𝑖𝑗

2
) (𝑌ℎ𝑔𝑖𝑗 + 1)

(4)

∑ 𝑋𝑖𝑗𝑘𝑘 = 1, 𝑘 ∈ 𝑆𝑖𝑗 , ∀𝑖, 𝑗

 (5)

6

𝑌ℎ𝑔𝑖𝑗 ∈ {−1,0,1}

 (6)

𝑋𝑖𝑗𝑘 ∈ {0,1} (7)

Equation (1) is the objective function. Inequality (2) is the precedence constraints.

Inequality (3) ensures that there are no overlaps between operations on each machine.

Equation (4) computes the length of each idle time interval. Equations (5) - (7) are constraints

on the decision variables.

Table 2 shows an FJSP example. The number in each entry is pijk. If pijk=0, it means the

machine is not available for Oij.

Table 2 An instance of FJSP

 Machine 1 Machine 2 Machine 3

J1

O11 2 3 0

O21 0 5 2

O31 3 6 4

J2

O12 0 4 5

O22 5 5 6

O32 2 4 8

J3 O13 4 0 6

O23 4 4 4

 O33 5 6 7

3. Elitist Quantum-inspired Evolutionary Algorithm for FJSP

This section investigates how to solve the FJSP with QEA for obtaining the minimal

makespan.

3.1 Procedure of EQEA for FJSP

QEA utilises the concepts of a quantum bit, a superposition of states and the collapse of

states. Like other evolutionary algorithms, QEA is also characterised by the representation

of the individuals, the evaluation function and the population dynamics. Instead of using

binary, numeric or symbolic sequences to represent feasible solutions, QEA uses quantum

bit (Q-bit) chromosomes to encode probabilistic representation. A Q-bit chromosome can

represent a linear superposition of states in the search space. As such, the Q-bit

representation has a better characteristic of population diversity than any other

7

representation. Meanwhile, a quantum rotation gate is used as the updating mechanism.

The mechanism helps guide the search direction to the optimal area, and therefore increase

the convergence speed.

To avoid the oscillation, the elitist strategy can be integrated into the QEA. As such an

integrated QEA is formed. We name it elitist QEA (EQEA) for short. The main structure of

the algorithm (Fig. 1) creates novelty in the following four aspects.

 a new representation for the FJSP;

 the integration of the niche technology, which can prevent the simple QEA from

converging to local optima;

 the integration of the elitist strategy, which can thoroughly prevent the

convergence process from oscillation and can also speed up the convergence

process efficiently; and

 the local search process, which enhances the local search ability.

The forementioned four points will be elaborated in Section 3.2.

Initialise a population

Decode and evaluation

Execute the niche
technology

Is the local best individual?

Local search with
 the energy-jumping algorithm

Y

Update with
 the rotation gate operation

N

Merge the individuals

Terminate?

Output the best solution

Y

N

8

 Fig. 1. The framework of the EQEA

3.2 Details of the EQEA

3.2.1 Q-bit chromosome encoding and the population initialisation

The EQEA evolves with a population like GA. The population comprises a number of

chromosomes. A chromosome is made up of Q-bit genes. Unlike the binary, numeric, or

symbolic representation, the state of a Q-bit gene can be represented by (8).

0 1 (8)

where 0 and 1 represent bit values ‘0’ and ‘1’, respectively; α and β are complex

numbers that specify the probability amplitudes of the corresponding states.
2

 and

2
 , satisfying

2 2
1 , denote the probability of the Q-bit gene that will be found in

the state ‘1’ or the state ‘0’, respectively. A Q-bit gene may be in state ‘1’, state ‘0’, or in any

linear superposition of the two. The advantage of using the Q-bit gene is that it can

represent a linear superposition of solutions. For example, if there is a system represented

by q Q-bits, the system can represent 2q states at the same time. However, in the act of

observing a quantum state, it collapses to a single state. For simplicity, we refer this Q-bit

gene as a q-Q-bit gene, where q is the number of Q-bits in a gene. Each q-Q-bit is the

smallest unit of information.

A Q-bit chromosome consists of a certain number of q-Q-bit genes. For example, if q=1,

the chromosome is defined by:

1 2

1 2

f

f

 (9)

where |𝛼𝑖|2 + |𝛽𝑖|2 = 1, 𝑖 = 1,2, … 𝑓 and there are f units separated by vertical lines.

For simplicity, the sine function and the cosine function are used to generate α and β,

respectively. Obviously, the condition |𝛼|2 + |𝛽|2 = 1 is satisfied whatever value the angle

has. Therefore, the angle is computed by a random number γ ∈ (0,1) multiplied with 2π.

For example, if f=6, a chromosome composing of the 1-Q-bit genes is generated as the

following:

9

-0.8452 0.7849 0.9346 -0.6023 0.3865 0.9981
=

 0.5344 -0.6196 0.3558 0.7983 -0.9223 0.0619
ip

The evolving process is executed on a population. A population is initialised by

randomly generating a group of Q-bit chromosomes.

3.2.2 Chromosome converting mechanism for FJSP

The chromosome composing of m-Q-bit genes cannot directly be used to represent

FJSP. A converting mechanism, therefore, is needed. When we structure converting

mechanism, we must consider the characters of the FJSP presentation firstly to propose a

targeting chromosome representation as the converting target.

(1) Targeting chromosome representation

In existing literature, there are four types of chromosome representations for FJSP.

Chromosome A (Chen et al, 1999) comprises two integer strings (A1 and A2). The

length of each string equals the total number of operations. String A1 assigns a machine

index to each operation. The value of the j-th position of the string A1 indicates the machine

performing the j-th operation. String A2 encodes the order of operations on each machine.

Chromosome B (Paredis, 1992) also comprises two strings (B1 and B2). String B1 is

identical to A1. String B2 is a bit string that gives the order of any pair of operations. A bit

value of 0 indicates that the first operation in the paired-combination must be performed

before the second operation.

Chromosome C (Ho and Tay, 2004) is composed of two strings (C1 and C2), too. It

represents an instance of the FJSP. String C1 encodes the order of the operations. It does not

specify the order of operations for the same job as this is already implied by its index value.

String C2 represents the machine assignment to operations (like A1 and B1) but with a

twist. To ensure solution feasibility, the machine index is manipulated so that the string will

always be valid.

Chromosome D (Tay and Wibowo, 2004) is composed of strings like that in

chromosome B and C. It comprises three strings (D1, D2 and D3). D1 and D2 are equivalent

to C1 and C2, respectively, while D3 is similar to B2.

10

Different from the aforementioned four representation ways, a new chromosome

representation for FJSP is proposed. This is the targeting chromosome and we name it

chromosome E according to the naming rule in Tay and Wibowo (2004).

Chromosome E modifies the operation-based encoding (Gen et al.,1994). Each

chromosome is composed of n×max{nj} numbers and each number corresponding a job

occurs max{nj} times. A surplus part represents those jobs whose operation number are

less than max{nj}. The surplus part is referred to as virtual operations that don’t take any

machine time. For the 3×3 problem (Table 2), a feasible chromosome encoded with job

number is [2 1 3 3 2 2 1 1 3]. The matchup between the chromosome and the sequence of

the operations is described in Fig. 2.

Fig. 2. Matchup between the chromosome and the operations

The space complexity of the chromosome E is less than the others. Following Tay and

Wibowo (2004), we denote T as the total number of job operations in an FJSP. In the best

case when the numbers of operations for each job are the same, the length of chromosome

E is T. In the worst case, however, when there is a special job whose operation number is

far greater than those of the others (assuming there is only 1 operation for these jobs), the

length of the chromosome is n*(T-n+1). The worst case occurs with a very low probability

because there are always similar jobs to be processed in a practical production workshop.

So one can confidently conclude that the length of the chromosome E is normally shorter

than that of the others. To make a comparison, we list the space complexity of the five

chromosome representations in Table 3. Variable d denotes the length of the string D3 (Tay

and Wibowo 2004).

Table 3 Space complexity of the representations

Chromosome representation Chromosome length

Chromosome A (Chen et al., 1999) 2T

Chromosome B (Paredis, 1992) T + 0.5T (T – 1)

2 1 3 3 2 2 1 1 3

O12 O11 O13 O23 O22 O32 O21 O31 O33

Chromosome

Operations

11

Chromosome C (Ho and Tay, 2004) T + 0.5T (T – 1)

Chromosome D (Tay and Wibowo, 2004) 2T + d

Chromosome E n×max{nj}∈[T,n(T-n+1)]

(2) Converting mechanism

Once having determined the structure of the targeting chromosome presentation, one

can convert the Q-bit chromosome to the targeting chromosome with the following

converting algorithm.

First, convert a Q-bit chromosome to a binary row vector Bstring. Observe a state, i.e., if

|𝛼𝑖|2 > |𝛽𝑖|2, then let Bstring[i] =1, otherwise, let Bstring[i] =0.

Second, convert the binary row vector Bstring to a decimal row vector Dstring

according to the binary to decimal conversion rule. It is notable that this conversion is

calculated in an information unit which consists of q Q-bit genes.

Third, convert the decimal row vector Dstring to the targeting chromosome vector

Ostring. To keep a higher diversity, a new converting method is presented. Different from

Shor (1994), where the job numbers to replace the decimal elements follows a predefined

order, we don’t predefine the order of the job numbers. Instead, we adopt a random order

which provides more chance to generate more diversity among chromosomes. The steps

are illustrated as following.

Step 1. Randomly rank all the job numbers and form a set randorder, which has n

elements.

Step 2. Copy the Dstring to the Ostring.

Step 3. From the beginning of the Ostring, locate the first n minimal genes and

replace them with job numbers in randorder one by one. Then locate the second n

minimal genes and replace them by randorder, etc, until all the genes are replaced.

To summarize the converting process, we use Fig. 3(a) to illustrate the converting result

for the FJSP (Table 2) with the following steps.

(1) Encode the 1-Q-bit chromosome,

(2) Convert the 1-Q-bit chromosome to a binary chromosome,

(3) Convert to a decimal chromosome, and

12

(4) Finally to convert to the targeting chromosome.

In these steps, we assume the random order set of the job numbers randorder to be [2 1

3]. The elements in the 2nd, 3rd, and 6th are the first minimal 3 genes, so [2 1 3] are set

their positions respectively. The elements in the 7th, 1st and 4th are the second minimal 3

genes, so [2 1 3] are set to these positions. The 5th, 8th and 9th are the last minimal 3 genes,

set [2 1 3] to the respective positions. As such, we obtain the final targeting chromosome is

[1 2 1 3 2 3 2 1 3].

To make a comparison, we also give an example, shown in Fig. 3(b), following Shor

(1994). Assume a pre-defined job number order is [1 2 3], hence each position in the first n

minimal elements are replaced with “1” (see the 2nd, 3rd, and 6th positions), each position

in the second n minimal elements are replaced with “2” (see the 7th, 1st and 4th positions),

and each position in the last n minimal elements are replaced with “3” (see the 5th, 8th and

9th positions). Thus, the Ostring=[2 1 1 2 3 1 2 3 3]. Comparing [1 2 1 3 2 3 2 1 3] with [2 1

1 2 3 1 2 3 3], one can see that the entropy of Ostring in Fig. 3(a) is larger than that in Fig.

3(b). Moreover, different randorder is generated when we convert each Q-bit chromosome

to Ostring. Hence the gene in the same position is different in most cases. When the method

(Shor,1994) is used, however, the same order is adopted for each chromosome. This causes

a problem that the diversity is weakened.

 0.9941 0.3484 -0.2876 -0.9955 0.7517 -0.5098 -0.6631 0.6372 -0.9133
-0.1084 -0.9373 -0.9577 0.0943 0.6595 -0.8603 0.7486 0.7707 -0.4073

 1 0 0 1 1 0 0 1 1

1 2 1 3 2 3 2 1 3

1-Q-bit
chromosome

Bstring

Ostring

 1 0 0 1 1 0 0 1 1Dstring

(a) A chromosome with randorder

13

 0.9941 0.3484 -0.2876 -0.9955 0.7517 -0.5098 -0.6631 0.6372 -0.9133
-0.1084 -0.9373 -0.9577 0.0943 0.6595 -0.8603 0.7486 0.7707 -0.4073

 1 0 0 1 1 0 0 1 1

2 1 1 2 3 1 2 3 3

1-Q-bit
chromosome

Bstring

Ostring

 1 0 0 1 1 0 0 1 1Dstring

(b) A chromosome with a predefined order

Fig. 3. An example of the converting mechanism

3.2.3 Decoding and fitness evaluation

Before evaluation, each chromosome should be decoded to be a scheduling solution.

Thus, a scheduling algorithm is needed. We first give two variables.

Machine sequence matrix JM－define the available machines for each operations. Its

element JM(i, j) denotes the available machine for the (⌈𝑗/𝑚⌉ + 1)-th operation of the job Ji

(where the symbol ⌈ ⌉ is to get integral part of a float number). Each row JM(i, :) denotes

all the available machines for the operations of job Ji. The length of JM(i, :) equals

(max𝑗=1
𝑛 𝑛𝑗) × 𝑚. In each row, from the beginning, every m numbers form a fragment which

denotes all the available machines for an operation. Among the machines, if machine Mk is

available for an operation, we denote it as Mk; otherwise we denote it 0. In the total FJSP,

where each operation can be processed on any of the machines, the fragment equals to ‘1

2 … m’. As for the partial FJSP, where all machines are not always available, we can use ‘0’ to

ensure the length of the fragments. For example, in the FJSP (Table 2), the operation O11 can

be processed on machine M1 and machine M2 only, so the first fragment of JM(1, :) should be

‘1 2 0’; the operation O21 can be processed on machine M2 and machine M3 only, so the

second fragment of JM(1, :) should be ‘2 3 0’; the operation O31 can be processed on all the

machines, so the third fragment of JM(1, :) should be ‘1 2 3’. Thus, JM(1, :)=[1 2 0 2 3 0 1 2 3].

The number of fragments is determined by the maximum operation number max𝑗=1
𝑛 𝑛𝑗. For

those jobs whose operation number is less than max𝑗=1
𝑛 𝑛𝑗, it is designed to arrange the

available machines following the above rule firstly and then set ‘0’ (max𝑗=1
𝑛 𝑛𝑗 − 𝑛𝑖) × 𝑚

14

times to achieve the length max𝑗=1
𝑛 𝑛𝑗 × 𝑚.

Processing time matrix T－define the processing time on an available machine. Its

element T(i, j) denotes the processing time on machine JM(i, j) for the operation ⌈𝑗/𝑚⌉ + 1

of the job Ji. If JM(i, j)=0, it means the machine mod(𝑗/𝑚) (where the symbol “mod” is a

function to obtain the reminder of 𝑗/𝑚) is not available for the operation ⌈𝑗/𝑚⌉ + 1, its

processing time is, therefore, set to 0 as well. For example, in the FJSP in Table 2, the

operation O11 can be processed on machine M1 and machine M2 only and occupies 2 and 3

units of time respectively, so the first fragment of T(1, :) should be ‘2 3 0’.

As such, the machine sequence matrix and the processing time matrix for the FJSP (Table

2) can be defined as follows:

1 2 0 2 3 0 1 2 3

2 3 0 1 2 3 1 2 3

1 3 0 1 2 3 1 2 3

MJ

,

2 3 0 5 2 0 3 6 4

4 5 0 5 5 6 2 4 8

4 6 0 4 4 4 5 6 7

T

.

Once JM and T have been structured, a targeting chromosome can be decoded to a

scheduling solution. The decoding algorithm is illustrated in Fig.4. The process is shown as

following.

Step 1. Obtain a chromosome chrom and set x=1;

Step 2. Repeat when x is less than the length of the chromosome (=len(chrom))

Step 2.1. Obtain the x-th gene chrom(x), which is a job number;

Step 2.2. Determine the operation order r (=count(chrom(x))) according to the

appearing times of chrom(x). Search the available machines for the current

operation Or,chrom(x), and select the one on which the operation can be finished at

the earliest time en(chrom(x), r). Note, en is a matrix recording the ending time

of the operation Or,chrom(x). If there is more than one machine available, select the

one on which the processing time pchrom(x), r, k is the shortest.

Step 2.3: Compare the idle time of machine Mk, if the processing time pchrom(x), r, k is

shorter than the idle time idletime(k), go to step 2.4; otherwise go to step 2.5;

Step 2.4: Insert the operation Or,chrom(x) and determine its beginning time

st(chrom(x),r) and ending time en(chrom(x), r). Update the available time and

15

the idle time of machine Mk. Go to step 2.6.

Step 2.5: Append the operation Or,chrom(x) at the end of machine Mk and set its

beginning time st(chrom(x), r) to be the ending time of the machine (mach(k)).

Update its the ending time en(chrom(x), r) and the ending time mach(k) of

machine Mk by adding pchrom(x), r,k to st(chrom(x), r). Go to step 2.6.

Step 2.6: Obtain the next gene, set x=x+1, and return to the step 2.1.

Step 3: output the scheduling solution.

Initialise chrom x=1

Get chrom(x)

Set r=Count(chrom(x))

Min(en(chrom(x),r))

Get Or, chrom(x)

JM, T

Idletime(k)>pr, chrom(x),k?

Insert Or, chrom(x)

Update st(chrom(x),r),
en(chrom(x),r), mach(k)

x=x+1

x>len(chrom)?

Output a scheduling solution

Set st(chrom(x),r)=en(mach(k))

Y N

Y

N

Fig. 4. The decoding algorithm

An operation can be inserted into a machine’s idle interval [t1, t2] if and only if its

current operation processing time is shorter than t2-t1. The algorithm solves the machine

assignment problem and the operation sequence problem simultaneously. The algorithm

outputs a scheduling solution from which we can evaluate the fitness of the targeting

chromosome according to the following fitness function.

16

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

max (𝐶𝑖𝑗)
 (10)

The decoding algorithm proposed in this paper has similar computational complexity

to that of the existing methods. The major computational complexity lies in the loop of step

2. This loop needs repeating n×max𝑗=1
𝑛 𝑛𝑗 times. The time on running step 2.1 is O(1). All

the available machines for the current operation should be considered. In the worst case

scenario, the running time of the step 2.2 is O(m×n×max𝑗=1
𝑛 𝑛𝑗). The time on running step

2.3 is O(1). The running time for step 2.4 or step 2.5 is O(1). But only one of them should be

executed. The running time on step 2.6 is O(1). Therefore, the time complexity of the

decoding algorithm is given by,

Ta=O((n×max𝑗=1
𝑛 𝑛𝑗)×(1+m× n×max𝑗=1

𝑛 𝑛𝑗+1+1+1))

=O(mn2(max𝑗=1
𝑛 𝑛𝑗)2+4(n×max𝑗=1

𝑛 𝑛𝑗))

= O(mn2(max𝑗=1
𝑛 𝑛𝑗)2)

= O(T2).

All the time complexity of converting the five types of chromosome representations to

scheduling solutions is listed in Table 4 in which the variable c denotes the number of

precedence constraints.

Table 4 Conversion complexity of the representations

Chromosome representation Conversion complexity

Chromosome A (Chen et al 1999) O(T+c)

Chromosome B (Paredis 1992) O(T2+c)

Chromosome C (Ho and Tay 2004) O(T+c)

Chromosome D (Tay and Wibowo 2004) O(T+c+d)

Chromosome E O(T2)

3.2.4 Updating operation for the Q-bit chromosome

The difference among all the population-based evolutionary algorithms is their

population updating mechanism. Updating destroys old individuals and generates

offsprings. During the destroy-and-generate process, simply exchanging part of

genes of two parents usually generates an infeasible solution. Therefore, the

existing crossover operations for FJSP, including partial-mapped crossover (PMX),

17

order crossover (OX), position-based crossover (PBX), order-based crossover (OBX),

cycle crossover (CX), liner order crossover (LOX), subsequence exchange crossover

(SXX), partial schedule exchange crossover (PSXX), precedence preservative

crossover (PPX) and precedence operation crossover (POX) (Akay B., Yao X.,2013),

most need extra computing steps to adjust the infeasible solution to a feasible one.

As a result, the computing time is added necessarily, and thus the convergence

speed is influenced mostly. Hence, a simple and easy-to-conduct updating operator

is vital to an evolutionary algorithm.

 The dynamics of the evolution in the EQEA are controlled by the Schrödinger’s

equation. We choose the rotation gate (RG) to update the Q-bit chromosome. Its form is

given by Eq. (11).

𝑈(𝜃) = [
𝑐𝑜𝑠𝜃𝑖 − 𝑠𝑖𝑛𝜃𝑖

𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖
] (11)

where 𝜃𝑖 is the rotation angle and 𝜃𝑖 = 𝑠(𝛼𝑖𝛽𝑖)∆𝜃𝑖. The values of ∆𝜃𝑖 and 𝑠(𝛼𝑖𝛽𝑖) are

determined in Table 5, where bi and xi are the ith gene of the best chromosome and the

current chromosome in the current population, respectively. Each Q-bit gene can be

updated according to Eq. (12).

[
𝛼𝑖

𝑡+1

𝛽𝑖
𝑡+1] = [

𝑐𝑜𝑠𝜃𝑖 − 𝑠𝑖𝑛𝜃𝑖

𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖
] [

𝛼𝑖
𝑡

𝛽𝑖
𝑡] (12)

Table 5 The lookup table of 𝜃𝑖

xi bi () ()f x f b i ()i is

0i i 0i i 0i 0i

0 0 False 0 0 0 0 0

0 0 True 0 0 0 0 0

0 1 False 0 0 0 0 0

0 1 True 0.05π -1 +1 ±1 0

1 0 False 0.01π -1 +1 ±1 0

1 0 True 0.025π +1 -1 0 ±1

1 1 False 0.005π +1 -1 0 ±1

1 1 True 0.025π +1 -1 0 ±1

From (12), one can see that the rotation gate updating mechanism in EQEA

only needs one simple step. To make a comparison, Table 6 lists the computing

18

steps of the existing crossover operators plus the rotation gate. The offspring

are all feasible in that the generated quantum-based chromosome still needs to

be converted to the target chromosome. Such advantages all benefit from this

special quantum chromosome. It is, therefore, confidently to conclude that

quantum-based representation helps facilitate problem very well.

Table 6 Computing steps of crossover operators

 PMX OX PBX OBX CX LOX SXX PSXX PPX POX rotation gate

Steps 3 4 3 3 5 3 2 4 2 3 1

3.2.5 The niche technology

Since the rotation gate operation for each gene is the same, it is, however, easy to

trap into the local optima and lack of diversity of genes when the population evolves

more than certain times. Therefore, we integrate the niche technology.

The niche technology is proposed by Hyun et al. (1998). It can avoid trapping into local

optima when there are too many similar individuals in the population. A niche domain is

the space whose sizes are determined by Eq. (13).

𝜎𝑡 =
max 𝑡−min 𝑡

𝑃𝑠
 (13)

where max t and min t are the maximal and the minimal of the objective during the tth

generation, respectively, and Ps is the population size. The more chromosomes there are in

the space, the more similar they are. Therefore, the structure of the niche has a direct

impact on the quality of the diversity. We count the total number of the similar

chromosomes in the range 𝜎𝑡 for each chromosome. The one which has the most similar

chromosome is focused. Half of its similar chromosomes are replaced by generating

randomly new chromosomes to increase the diversity of the population.

3.2.6 The elitist selection

To speed up the convergence, the elitist strategy is adopted to prevent the loss of the

best chromosome during the evolutions. The best chromosome with highest fitness

19

individual will be identified and recorded. If the best chromosome is lost or becomes

weaker after evolution, it will be inserted back into the evolving population. The

integration of the elitist strategy with the QEA speeds up the convergence and reduces the

influence of the random factors during the evolutionary process.

3.2.7 A local search based on the atom structure energy distribution

It is widely accepted that a local search procedure is efficient in improving the solutions

generated by QEA (Zheng, T., Yamashiro, M., 2010). Inspired by the mechanism of the

motion of the electrons around an atomic nucleus, we design a local search to enhance the

local exploitation around the best solution.

Scientists have discovered that an atom consists of a nucleus and electrons. For example,

Fig.5 shows the atom structure of natrium, which comprises 11 protons in the nucleus, 2

electrons in the first orbit, 8 electrons in the second orbit and 1 electron in the outermost

orbit. The energy of an electron depends on the position of the orbit and is lower in smaller

orbits. The atoms are stable in the state with the smallest orbit in that there is no orbit of

lower energy into which the electron can jump. The closer to the atomic nucleus an electron

is, the lower energy it has. That is, those electrons located in the larger orbits have larger

energy and are less stable.

Fig. 5. The atom structure of natrium

Inspired by this phenomenon, we regard a solution for the FJSP as an atom, each

operation corresponds to an electron, and each electron orbit corresponds to an energy

level. To improve the scheduling solution, the operations compete to jump from a higher

energy level to a lower one. We define the energy level of a gene according to its position in

the targeting chromosome. The more frontal the gene lies in the chromosome, the lower

energy it has. A more stable solution may therefore be obtained.

The local search process is designed by letting the critical operation jump from the

position with a higher level energy to another position with a lower level energy. We call it

+11 2 8 1

20

an energy-jumping process. This process is executed only on the best individual. According

to the decoding algorithm (Fig. 4), moving the last gene forward in the critical path gives it

more chance to select better machines so that the whole energy of the new solution

decreases. If the result becomes better after the local search, we replace the best individual

with this new individual. If the result is no better than the original best individual, we keep

the original best individual. Based on the jumping extent, a shallow energy-jumping

algorithm, a deep energy-jumping algorithm, and a moderate-jumping algorithm can be

developed. The common point among the three algorithms is to move the operations in the

critical path. The distinction among them is how to and when to jump the operations.

The shallow energy-jumping algorithm is to move the last operation in the critical path

to the next position of its previous operation. A chromosome for the FJSP (Table 2) is

shown in Fig. 6. The last gene ‘3’ jumps to the fifth position and the gene ‘2’ in the fifth

position moves to the last position. After the jumping is completed, the makespan is

shortened from 16 to 15 so that the solution quality is improved.

1 2 3 3 2 1 1 2 3

1 2 3 3 3 1 1 2 2

1-1 3-1 3-2 2-3

2-1 2-2 3-3

1-2 1-3

M1

M2

M3

1-1 3-1 3-2

2-32-1 2-2

3-3

1-2 1-3

M1

M2

M3

2 4 6 8 10 12 14 16

2 4 6 8 10 12 14 16

Machine

Machine

Time

Time

0

0

Fig. 6. The shallow energy-jumping algorithm

 The deep energy-jumping algorithm is to move all the operations in the critical path to

the frontal of the chromosome. A chromosome for the FJSP (Table 2) is shown in Fig. 7. The

job number in the critical is ‘3’, therefore all the ‘3’s move forward and the replaced genes

moves back to the original position of the gene ‘3’ in turn. After the jumping is finished, the

makespan is shortened from 15 to 14 so that the solution quality is improved.

21

In some cases, there are multiple jobs in the critical path. The job with the longest total

processing time (we name it the most troublesome job) has the first chance to move to the

front of the chromosome. Next, the job with the second longest total processing time moves

behind the end of the most troublesome job, etc.

1 3 2 2 3 3 2 1 1

3 3 3 1 2 2 2 1 1

1-1 3-1 3-2

2-32-1 2-2

3-3

1-2 1-3

M1

M2

M3

3-1 3-2

2-3

2-1

2-2

3-3

1-2 1-3

M1

M2

M3

2 4 6 8 10 12 14 16

2 4 6 8 10 12 14 16

Machine

Machine

Time

Time

0

0

1-1

Fig.7. The deep energy-jumping algorithm

The moving strategy in the moderate energy-jumping algorithm is between that in the

shallow energy-jumping algorithm and that in the deep energy-jumping algorithm. If the

last gene in the critical path is just next to its previous operation, then we execute the deep

energy-jumping algorithm. Otherwise, we execute the shallow energy-jumping algorithm.

4. Evaluation

4.1 Design of experiment

To compare our approach with the existing methods (Hmida et al. 2010, Pezzella et al.

2008, Wang et al. 2012b, Gao et al. 2008, Mastrolilli and Gambardella 2000, Li et al. 2012,

Chiang and Lin 2013), we conduct five groups experiments:

(1) Setting parameters,

(2) Comparing three local search methods,

(3) Comparing the success rates,

(4) Comparing the convergence speed, and

(5) Comparing the two technologies for diversity.

22

All the experiments were conducted in a desktop computer with a Pentium dual-core

CPU E6600 3.0-GHz CPU, 2.0G RAM, WIN-XP OS, and Matlab©. Four groups of benchmark

instances (Table 6) are adopted. Columns 1, 2, 3 and 4 show the names of the instances, the

ranges of the job numbers, the ranges of the machine numbers, and the ranges of the

operations numbers for all jobs, respectively.

Table 6 Benchmark instances and their settings

instance name No. of jobs No. of machines No. of operations

Kacem_Data (Kacem et al., 2002) 4--15 5--15 12--56

BR_data (Brandimarte, 1993) 10--20 4--15 55--240

BC_data (Barnes et al., 1996) 10--15 11--18 100--225

DP_data (Dauzère-Pérès et al., 1997) 4--15 5--10 196--387

4.2 Computaional Results

4.2.1 Setting parameters

Parameters influence an algorithm’s performance. Four parameters are included:

(1) population size,

(2) iteration times,

(3) Q-bit number q in an information unit, and

(4) niche size Ns.

When more chromosomes are generated to form a population, more solutions are

provided so that the probability to find the optimal solution within fewer steps increases.

But this will take more computing time and space. We therefore set a medium population

size, i.e. 50. Similarly, the number of iterations is proportional to the searching result. We

set it as 200.

To determine the values of the Q-bit number and the niche size, 2 groups of

experiments are conducted on MK03 instance (Brandimarte, 1993). 4 levels, q=1,2,3,4, of

the Q-bit numbers are considered. The niche size has 4 levels: Ns=0.5d, d, 1.5d, 2d, where

 𝑑 =
max(𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛)−min (𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛)

𝑃𝑠 2⁄
.

23

We fix one parameter value and change another parameter value from the first level to

the fourth level. Each test runs 10 times. Fig. 8 presents the results influenced by the

different levels of the niche size when q=3. Results show that Ns=d can output the best

solutions. Fig. 9 presents the results influenced by the different levels of the Q-bit numbers

when Ns=d. Results indicate that q=3 and q=4 generate the same optimal value. For saving

computing resource, we choose q=3.

In all, all of the parameters are set as: the population size: 50, the iteration times: 200,

the Q-bit number: 3, and the niche size: d.

Fig.8. Results influenced by Ns

Fig.9. Results influenced by q

4.2.2 Comparing the three local search algorithms

To evaluate the three local search algorithms’ influence on the search process, two

groups of experiments are conducted on the MK03 instance (Brandimarte, 1993): EQEA

with or without local search. In the first group of EQEA, the three local search algorithms

202

206

210

214

1 2 3 4 5 6 7 8 9 10

Ns=0.5d Ns=d Ns=1.5d Ns=2d

200

220

240

260

1 2 3 4 5 6 7 8 9 10

q=4 q=3 q=2 q=1

24

are also compared furtherly. Each test runs 10 times to obtain an average result. Table 7

lists the iteration times that the best result (makespan=204) appears by each local search

algorithm, and the total CPU computing time that the 200 iterations costs totally in seconds.

The average values are listed in the last row.

Table 7 Comparison result for the local search algorithms

 EQEA with local search EQEA without local

search

No.
 Shallow Moderate Deep

iteration time iteration time iteration time iterations time

1 2 63.61 7 69.63 37 68.21 17 62.22

2 1 63.33 25 68.64 13 67.32 47 63.98

3 2 63.68 18 63.35 38 69.19 8 63.06

4 6 64.49 1 64.47 20 63.63 53 62.77

5 1 64.16 5 64.49 5 63.84 21 62.99

6 19 64.08 10 64.04 5 63.49 45 63.01

7 9 67.51 19 64.26 44 63.47 7 63.43

8 32 63.22 4 65.19 7 64.02 5 63.56

9 9 63.87 9 64.46 9 63.98 13 62.98

10 2 66.38 2 62.81 26 64.64 4 62.82

Mean 8.3 64.43 10 65.13 20.4 65.17 22 63.082

 Results (Table 7) indicate that even the worst result (from deep energy-jumping

algorithm) in the first group outperforms that in the second group. Furtherly, in the first

group, the shallow energy-jumping algorithm performs best (which only needs 8.3

iterations averagely), followed by the moderate energy-jumping algorithm (which needs 10

iterations averagely), and the deep energy-jumping algorithm (which needs 20.4 iterations

averagely). Since the local search process is only executed on the current best solution, the

shallow energy-jumping algorithm only exploits its neighborhood, which can ensure most

excellence genes can be preserved in the population. From this perspective, the deep

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E4%BB%8E%E8%BF%99%E4%B8%AA%E8%A7%92%E5%BA%A6%E6%9D%A5%E7%9C%8B
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E4%BB%8E%E8%BF%99%E4%B8%AA%E8%A7%92%E5%BA%A6%E6%9D%A5%E7%9C%8B

25

energy-jumping algorithm destroys most of the genes in the best chromosome so that it

takes more time to achieve to the best solution. However, it can help to explore a new area

and help protect the search process from trapping to prematurity. Of course, it may guide

the searching process to a worse area. To avoid deterioration, we compare the solutions

before and after the local search. If the deterioration appears, we cancel the local search

result. Thus, the deep energy-jumping algorithm is an effective method to avoid the

prematurity. The moderate energy-jumping algorithm performs slightly inferior to the

shallow energy-jumping algorithm, which implies that the probability that the last gene in

the critical path is located close to its previous operation is very low.

Based on the above analysis, we adopt the moderate energy-jumping algorithm. We

dynamically check the frequency of the current best solutions. If it exceeds a given

threshold (20 iterations, e.g.), we call the deep energy-jumping algorithm. This strategy can

balance the exploration ability and the exploitation ability of the search process.

4.2.3 Comparing the success rates

We repeatedly run the EQEA for 10 times on each of the benchmark instances and

report the best result. The results from some of the existing research are compared with

our algorithm.

Table 8 illustrates the comparison of the success rates between the EQEA and those in

the literatures (Wang et al. 2012b, Li et al. 2012, Chiang et al. 2013) on the Kacem_data

instances(Kacem et al., 2002). The first column reports the instance name. The second

column is the problem size: the number of jobs×the number of machines. Columns 3-5

report the results from other studies. Column 6 reports our best makespan over 10 runs of

EQEA. The success rate is the ratio of the number of those instances whose optimal

solutions can be sought by an algorithm to the total number of the instances. It can be seen

that all algorithms obtain the optimal solution with a 100% success rate.

Table 8 Results for the Kacem_data instances

Instance Job×machine Wang et al., 2012b Li et al., 2012 Chiang et al., 2013 EQEA

Kacem 1 4×5 11 11 11 11

Kacem 2 8×8 14 14 14 14

26

Kacem 3 10×7 11 11 11 11

Kacem 4 10×10 7 7 7 7

Kacem 5 15×10 11 11 11 11

Success rate 100% 100% 100% 100%

Wang et al. 2012b: implemented in C++ on a 3.2 GHz Intel Core i5 processor

Li et al. 2012: implemented in C++ on a Pentium IV 1.8 GHz with 512 M memory.

Chiang et al. 2013: not given

Table 9 reports the results of the BR_data instances (Brandimarte, 1993). Results from

Hmida et al.(2010), Pezzella et al.(2008), Wang et al. (2012), and Gao et al.(2008) are

compared with the EQEA, respectively. The table has a similar structure as Table 8, except

that the third column reports the lower bound and the upper bound. It can be found that

the EQEA has a 90% success rate, whereas the algorithms shown in Hmida et al.(2010),

Pezzella et al.(2008), Wang et al. (2012), and Gao et al.(2008) achieved success rates of

90%, 60%, 90%, 90% and 90%, respectively.

Table 9 Results for the BR_data 10 instances

Instance Job×

machine

(LB, UB) Hmida et

al.,2010

Pezzella

et al.,2008

Wang et

al., 2012b

Gao et

al.,2008

EQEA

MK01 10×6 (36,42) 40 40 40 40 40

MK02 10×6 (24,32) 26 26 26 26 26

MK03 15×8 (204,211) 204 204 204 204 204

MK04 15×8 (48,81) 60 60 60 60 60

MK05 15×4 (168,186) 173 173 172 172 172

MK06 10×15 (33,86) 58 63 58 58 58

MK07 20×5 (133,157) 139 139 139 139 139

MK08 20×10 (523) 523 523 523 523 523

MK09 20×10 (299,369) 307 311 307 307 307

MK10 20×15 (165,296) 197 212 198 212 212

Success rate 90% 60% 90% 90% 90%

Hmida et al.2010: implemented in C on an Intel Core 2 Duo 2.9GHz Personal Computer with 2GB of

RAM.

Pezzella F et al.2008: implemented on a 1.8MHz Pentium IV processor

Wang et al. 2012b: implemented in C++ on a 3.2 GHz Intel Core i5 processor

Gao et al.2008: implemented in Delphi on a 3.0GHz Pentium.

Table 10 reports the results of the BC_data instances (Barnes et al., 1996). Results of

Hmida et al.(2010), Gao et al.(2008), and Mastrolilli et al.(2000) are compared with the

EQEA, respectively. Results show that the EQEA has a 86% success rate, whereas the

27

algorithms shown in Hmida et al. (2010), Gao et al. (2008), and Mastrolilli et al.(2000)

achieved success rates of 81%, 62% and 86%, respectively.

Table 10 Results for the BC_data 22 instances

Instance Job×machine (LB, UB) Hmida et

al.,2010

Gao et

al.,2008

Mastrolilli

et al.,2000

EQEA

mt10x 10×11 (655,929) 918 918 918 918

mt10xx 10×12 (655,929) 918 918 918 918

mt10xxx 10×13 (655,936) 918 918 918 918

mt10xy 10×11 (655,913) 906 905 906 905

mt10xyz 10×12 (655,849) 849 849 847 849

mt10c1 10×11 (655,927) 928 927 928 928

mt10cc 10×12 (655,914) 910 910 910 910

setb4x 15×11 (846,937) 925 925 925 925

setb4xx 15×12 (846,930) 925 925 925 925

setb4xxx 15×13 (846,925) 925 925 925 925

setb4xy 15×12 (846,924) 916 916 916 916

setb4xyz 15×13 (838,914) 905 905 905 905

setb4c9 15×11 (857,924) 919 914 919 919

setb4cc 15×12 (857,909) 909 914 909 909

seti5x 15×16 (955,1218) 1201 1204 1201 1201

seti5xx 15×17 (955,1204) 1199 1202 1199 1199

seti5xxx 15×18 (955,1213) 1197 1204 1197 1197

seti5xy 15×17 (955,1148) 1136 1136 1136 1136

seti5xyz 15×18 (955,1127) 1125 1126 1125 1125

seti5c12 15×16 (1027,1185) 1174 1175 1174 1174

seti5cc 15×17 (955,1136) 1136 1138 1136 1136

Success rate 81% 62% 86% 86%

Hmida et al.2010: implemented in C on an Intel Core 2 Duo 2.9GHz Personal Computer with 2GB of

RAM.

Gao et al.2008: implemented in Delphi on a 3.0GHz Pentium.

Mastrolilli et al.2000: implemented in C++ on a 266 Pentium.

Table 11 reports the results of the DP_data instances (Dauzère-Pérès et al., 1997). The

results from Hmida et al.(2010), Gao et al.(2008), and Mastrolilli et al.(2000) are compared

with the EQEA, respectively. The EQEA achieves a success rate of 83%, whereas the

algorithms of Hmida et al. (2010), Gao et al. (2008) and Mastrolilli et al. (2000) had 89%, 61%

and 67.7%, respectively.

Table 11 Results for the DP_data 18 instances

Instance Job×

machine

(LB, UB) Hmida et

al.,2010

Gao et

al.,2008

Mastrolilli

et al.,2000

EQEA

28

01a

10×5

(2505,2530) 2518 2518 2518 2518

02a (2228,2244) 2231 2231 2231 2231

03a (2228,2235) 2229 2229 2229 2229

04a (2503, 2565) 2503 2515 2503 2503

05a (2189, 2229) 2216 2217 2216 2216

06a (2162, 2216) 2196 2196 2203 2196

07a

15×8

(2187, 2408) 2283 2307 2283 2305

08a (2061, 2093) 2069 2073 2069 2069

09a (2061, 2074) 2066 2066 2066 2066

10a (2178, 2362) 2291 2315 2291 2291

11a (2017, 2078) 2063 2071 2063 2065

12a (1969, 2047) 2031 2030 2034 2031

13a

20×10

(2161, 2302) 2257 2257 2260 2257

14a (2161, 2183) 2167 2167 2167 2167

15a (2161, 2171) 2165 2165 2167 2165

16a (2148, 2301) 2256 2256 2255 2255

17a (2088, 2169) 2140 2140 2141 2140

18a (2057, 2139) 2127 2127 2137 2127

Success rate 89% 61% 67.7% 83%

To conclude, results of the tests on the Kacem_data (Kacem et al., 2002) prove that the

perfect convergence speed of the EQEA, On the other hand, the results of the tests on the

BR_data (Brandimarte, 1993), BC_data (Barnes et al., 1996) and the DP_data

(Dauzère-Pérès et al., 1997) show good exploration and exploitation ability of the EQEA.

Fig.10 includes four figures comparing the success rates on the four group benchmark

instances. Those comparisons show the outstanding performance of the EQEA.

(a) Success rates on Kacem_Data

0%

25%

50%

75%

100%

Wang et al.
2012b

Li et al. 2012 Chiang et al.
2013

EQEA

29

(b) Success rates on BR_data

(c) Success rates on BC_data

(d) Success rates on DP_data

Fig. 10. Comparison of success rates on different benchmark instances

0%

25%

50%

75%

100%

Hmida et
al. 2010

Pezzella et
al. 2008

Wang et
al. 2012b

Gao et al.
2008

EQEA

0%

25%

50%

75%

100%

Hmida et al.
2010

Gao et al. 2008 Mastrolilli et
al. 2000

EQEA

0%

25%

50%

75%

100%

Hmida et al.
2010

Gao et al. 2008 Mastrolilli et al.
2000

EQEA

30

4.2.4 Comparing the convergence speed

Table 12 compares the CPU computing time in seconds based on the Kacem_data

(Kacem et al., 2002) with the EQEA and the one developed by Wang et al. (2012). The

results show that the EQEA outperforms the algorithm developed by Wang et al. (2012).

Table 12 The comparison of computing time (s)

Instance Job×machine Wang et al., 2012b EQEA

Kacem1 4×5 0.01 0.008

Kacem2 8×8 0.23 0.122

Kacem3 10×7 0.3 0.071

Kacem4 10×10 0.42 0.347

Kacem5 15×10 14.88 9.694

4.2.5 Comparing the two technologies for diversity

From the comparison of the success rate (Section 4.2.3) and the convergence speed

(Section 4.2.4), it can be concluded that the proposed EQEA yields good performance.

Compared with other algorithms, the EQEA adopts two technologies---the niche technology,

and an energy-jumping local search---to increase diversity of the solutions. Another

interesting question is which component makes a better contribution to the performance.

To cater to such an interest, we conduct some more experiments to analyze the impact of

these components.

The first experiment is to analyze the impact of the niche technology. We delete the

niche technology from the EQEA and run this new EQEA 10 times. The iterations that the

optimal solution (makespan=204) appears and the total computing time (200 iterations)

are listed in columns 2 and 3 in Table 13. The second experiment is to analyze the impact of

the local search. Similarly, we delete the local search from the EQEA and run this new EQEA

10 times. The iterations that the optimal solution (makespan=204) appears and the total

computing time (200 iterations) are listed in columns 4 and 5. The results of EQEA

(makespan=204) are listed in columns 6 and 7 to make a comparison. Their average value is

listed in the last row. One can see that it takes 36.6 iterations and 22 iterations on average,

respectively, when there is no niche technology or local search. Hence, it can be concluded

that the niche technique influences the convergence speed of EQEA more than the local

31

search algorithm. This is due to the extent to be affected by these two technologies. The

niche technology is executed on the whole population and the local search is only executed

on the local best individual.

Table 13. Comparison of the two technologies for population diversity

No. No niche No local search EQEA

iterations time iterations time iterations time

1 4 73.74 17 62.22 7 69.63

2 18 65.83 47 63.98 25 68.64

3 13 65.17 8 63.06 18 63.35

4 104 65.04 53 62.77 1 64.47

5 14 65.02 21 62.99 5 64.49

6 6 64.64 45 63.01 10 64.04

7 127 64.71 7 63.43 19 64.26

8 53 64.65 5 63.56 4 65.19

9 17 65.36 13 62.98 9 64.46

10 10 65.44 4 62.82 2 62.81

average 36.6 65.96 22 63.082 10 65.134

5. Conclusions

In this study, a new fast algorithm that integrates the quantum-inspired evolutionary

algorithm with the elitist strategy was developed to solve the FJSP. Two novel methods were

proposed to increase the diversity of the population: one is the niche technology conducted

on the whole population aiming to reduce the similarity among individuals, and the other is

a new local search technology, inspired by the motion mechanism of the electrons around

an atomic nucleus, conducted on the elitist individual. The local search comprises three

energy-jumping algorithms aiming at exploiting a better neighbor solution. The

performance of the proposed approach was assessed on well- known benchmarks. The

results show the proposed approach can solve the FJSP more efficiently and effectively than

those compared in this paper.

32

In addition, to the best of our knowledge, this is the first reported application of the

quantum-inspired evolutionary algorithm to solve FJSP. In the future, it will be interesting

to investigate on the following issues:

1) to improve the local search process;

2) to develop multi-objective EQEA to solve the FJSP with multi-objectives; and

3) to explore more practical constraints such as the random breakdown or the

preventive maintenance activities.

Acknowledgment

This paper is partially supported by the National Natural Science Foundation of China

under Grant (Grant No.51305024) and Fundamental Research Funds for the Central

Universities (Grant No. FRF-TP-14-031A2). We greatly acknowledge the two anonymous

reviewers and Professor Xin Yao from University of Birmingham, UK for their suggestions to

improve the paper.

References

Akay B., Yao X.(2013). Recent Advances in Evolutionary Algorithms for Job Shop

Scheduling. Automated Scheduling and Planning Studies in Computational

Intelligence. Springer Berlin Heidelberg.505: 191-224

Barnes, J.W., Chambers, J.B. (1996). Flexible job shop scheduling by tabu search. Graduate

Program in Operations Research and Industrial Engineering, the University of Texas at

Austin, Technical Report Series.

Baykasoglu, A., Ozbakir, L., & Sönmez, A. I. (2004). Using multiple objective tabu search and

grammars to model and solve multi-objective flexible job shop scheduling problems. Journal of

Intelligent Manufacturing, 15(6), 777–78

Brandimarte, P.(1993). Routing and scheduling in a flexible job shop by tabu search.

Annals of Operation Research, 41:157-83.

Brucker, P., Schlie, R. (1990). Job-shop scheduling with multi-purpose machines.

Computing, 45:369-75.

Chiang, T.C., Lin, H.J. (2013). A simple and effective evolutionary algorithm for

multiobjective flexible job shop scheduling, International Journal of Production

Economy, 141:87-98.

Chen, H., Ihlow, J., Lehmann, C. (1999). A genetic algorithm for flexible job-shop

scheduling, Proceedings of IEEE International Conference on Robotics and Automation

2: 1120–1125.

http://link.springer.com/book/10.1007/978-3-642-39304-4
http://link.springer.com/bookseries/7092
http://link.springer.com/bookseries/7092

33

Chen, J.C., Wu, C., Chen, C., Chen, K. (2012). Flexible job shop scheduling with parallel

machines using genetic algorithm and grouping genetic algorithm. Expert Systems with

Applications, 39: 10016-10021.

Dauzère-Pérès, S., Paulli, J. (1997). An integrated approach for modeling and solving the

general multiprocessor job-shop scheduling problem using tabu search. Annals of

Operation Research,70:281-306.

Demir, Y., Kürşat Işleyen, S. (2013). Evaluation of mathematical models for flexible

job-shop scheduling problems. Applied Mathematics Modelling, 37:977-88.

Gao, J., Sun, L., Gen, M. (2008). A hybrid genetic and variable neighborhood descent

algorithm for flexible job shop scheduling problems. Computers and Operations

Research, 35:2892-907.

Gen, M., Lin L., Multiobjective evolutionary algorithm for manufacturing scheduling problems:

state-of-the-art survey. Journal of Intelligent Manufacturing. 2014,25(5): 849-866

Gen, M., Tsujimura, Y., Kubota, E. (1994). Solving job-shop scheduling problems by genetic

algorithm. Proceedings of the IEEE International Conference on Systems, Man and

Cybernetics 2:1577-82.

Hmida, A.B., Haouari, M., Huguet, M.J., Lopez, P. (2010). Discrepancy search for the flexible

job shop scheduling problem. Computers and Operations Research, 37: 2192–2201.

Ho, N.B., Tay, J.C. (2004). GENACE: An efficient cultural algorithm for solving the flexible

job-shop problem. Proceedings of the 2004 Congress on Evolutionary Computation,

CEC2004.2:1759-66.

Hyun, C.J., Kim, Y., Kim, Y.K. (1998). A genetic algorithm for multiple objective sequencing

problems in mixed model assembly lines. Computers and Operations Research,

25:675-90.

Jia, H.Z., Nee, A.Y.C., Fuh, J.Y.H., & Zhang Y.F. (2003). A modified genetic algorithm for

distributed scheduling problems. International Journal of Intelligent Manufacturing.

14: 351–62.

Kacem, I., Hammadi, S., Borne, P. (2002). Approach by localization and multi-objective

evolutionary optimization for flexible job-shop scheduling problems. IEEE

Transactions on Systems Man and Cybernetics C, 32:408-19.

Li, J., Pan, Q. (2012). Chemical-reaction optimization for flexible job-shop scheduling

problems with maintenance activity. Applied Soft Computing ,12:2896-912.

Li, J.Q., Pan, Q.K., Gao, K.Z. (2012). Pareto-based discrete artificial bee colony algorithm for

multi-objective flexible job shop scheduling problems, International Journal of

Advanced Manufacturing Technology,55:1159-1169.

Loukil, T., Teghem, J., Tuyttens, D. (2005). Solving multi-objective production scheduling

problems using metaheuristics. European Journal of Operational Research, 161:42-61.

Lu, T.C., Yu, G.R. (2013). An adaptive population multi-objective quantum-inspired

evolutionary algorithm for multi-objective 0/1 knapsack problems. Inform Sciences,

243:39–56.

Mati, Y., Rezg, N., Xie, X. (2001). An integrated greedy heuristic for a flexible job shop

scheduling problem. Proceedings of the IEEE International Conference on Systems,

Man and Cybernetics 4:2534-9.

34

Mastrolilli, M., Gambardella, L.M. (2000). Effective neighbourhood functions for the

flexible job shop problem. Journal of Scheduling, 3:3-20.

Nagamani, M., Chandrasekaran, E., Saravanan, D. (2012). Single Objective Evolutionary

Algorithm for Flexible Job-shop Scheduling Problem. International Journal of

Mathematics Trends and Technology, 3(2):78-81

Paredis, J. (1992). Exploiting constraints as background knowledge for genetic algorithms:

A case study for scheduling. Parallel Problem Solving from Nature: PPSN II:281-90.

Pezzella, F., Morganti, G., Ciaschetti, G. (2008). A genetic algorithm for the flexible

job-shop scheduling problem. Computers and Operations Research, 35:3202-12.

Shor, P.W. (1994). Algorithms for quantum computation: Discrete logarithms and

factoring. Proceedings of the 35th Annual Symposium on the Foundations of

Computer Science:124-134.

Tay, J.C., Wibowo, D. (2004). An effective chromosome representation for evolving flexible

job shop schedules. Lecture Notes in Computer Science, 3103:210-21.

Wang, L.X., Kowk ,S. K., Ip, W. H. (2012a). Design of an improved quantum-inspired

evolutionary algorithm for a transportation problem in logistics systems. Journal of

Intelligent Manufacturing, 23:2227–2236.

Wang, L., Wang, S., Xu, Y., Zhou, G., Liu, M. (2012b). A bi-population based estimation of

distribution algorithm for the flexible job-shop scheduling problem. Computers &

Industrial Engineering, 62:917-26.

Xia, W., Wu, Z. (2005). An effective hybrid optimization approach for multi-objective

flexible job-shop scheduling problems. Computers & industrial engineering ,48:409-25.

Xing, L.N., Chen, Y.W., Wang, P., Zhao, Q.S., Xiong, J. (2010). A knowledge-basedant colony

optimization for flexible job shop scheduling problems. Applied Soft Computing,10:

888-896.

Xing, L. N., Chen, Y. W., & Yang, K. W. (2009). An efficient search method for multi-objective

flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 20(3), 283–293.

Yazdani, M., Amiri, M., Zandieh, M. (2010). Flexible job-shop scheduling with parallel

variable neighborhood search algorithm. Expert Systems with Applications, 37(1):

678-687.

Zheng, T., Yamashiro, M. (2010). Solving flow shop scheduling problems by quantum

differential evolutionary algorithm. International Journal of Advanced Manufacturing

Technology, 49:643–662.

