85 research outputs found

    Ecology good, aut-ecology better; Improving the sustainability of designed plantings

    Get PDF
    © 2015 European Council of Landscape Architecture Schools (ECLAS). This paper explores how contemporary ecological science, and aut-ecology in particular, can improve the sustainability of designed vegetation. It is proposed that ecological understanding can be applied to design at three levels: 1) as representation, 2) as process, and 3) as aut-ecology, representing a gradient from the least to the most profound. Key ecological interactions that determine the success of designed plantings are explored via a review of relevant ecological research, challenging some widely held but unhelpful constructs about how both semi-natural and designed vegetation actually function. The paper concludes that there are real benefits to integrating aut-ecological understanding in the design of vegetation at all scales but that this will require ecological theory to be taught as a design toolkit rather than largely as descriptive knowledge

    Genotyping Validates the Efficacy of Photographic Identification in a Capture-Mark-Recapture Study Based on the Head Scale Patterns of the Prairie Lizard (\u3ci\u3eSceloporus consobrinus\u3c/i\u3e)

    Get PDF
    Population studies often incorporate capture‐mark‐recapture (CMR) techniques to gather information on long‐term biological and demographic characteristics. A fundamental requirement for CMR studies is that an individual must be uniquely and permanently marked to ensure reliable reidentification throughout its lifespan. Photographic identification involving automated photographic identification software has become a popular and efficient noninvasive method for identifying individuals based on natural markings. However, few studies have (a) robustly assessed the performance of automated programs by using a double‐marking system or (b) determined their efficacy for long‐term studies by incorporating multi‐year data. Here, we evaluated the performance of the program Interactive Individual Identification System (I3S) by cross‐validating photographic identifications based on the head scale pattern of the prairie lizard (Sceloporus consobrinus) with individual microsatellite genotyping (N = 863). Further, we assessed the efficacy of the program to identify individuals over time by comparing error rates between within‐year and between‐year recaptures. Recaptured lizards were correctly identified by I3S in 94.1% of cases. We estimated a false rejection rate (FRR) of 5.9% and a false acceptance rate (FAR) of 0%. By using I3S, we correctly identified 97.8% of within‐year recaptures (FRR = 2.2%; FAR = 0%) and 91.1% of between‐year recaptures (FRR = 8.9%; FAR = 0%). Misidentifications were primarily due to poor photograph quality (N = 4). However, two misidentifications were caused by indistinct scale configuration due to scale damage (N = 1) and ontogenetic changes in head scalation between capture events (N = 1). We conclude that automated photographic identification based on head scale patterns is a reliable and accurate method for identifying individuals over time. Because many lizard or reptilian species possess variable head squamation, this method has potential for successful application in many species

    Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    No full text
    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to ~1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability (K~10−1–100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K~10−2 m/day at 150–400 m BGL to 10−3 m/day down-dip at ~1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs (~0.7–1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields

    Testing a global standard for quantifying species recovery and assessing conservation impact

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    The dynamics of designed plant communities of rosette forming forbs for use in supra-urban drainage swales

    Get PDF
    This study looked at the medium term (5 years) dynamics of a sown, designed community of uncompetitive rosette forbs in wet, seasonally anaerobic soils. Twenty-one species of wet grassland habitats (15 non-native and 6 native) were sown in 2004 in a split plot experiment, and then subjected to management treatments (cutting and irrigation) to test the response of individual species and the community as a whole. Density of sown plants declined across the experiment due to self-thinning, but this decline was not uniform, and resulted in three response groups, persisters, decliners and intermediates. These patterns of decline were not related to whether the species were native or non-native but rather reflected the fitness of individual species in relation to the specific conditions prevailing in the experiment. Three of the five persistent species were non-native. Neither irrigation nor cutting time (September or November) affected persistence. The main effect of the management treatments was to increase (in the case of irrigation plus November cut treatments) overall standing sown biomass and the biomass of individual plants. These larger plants flowered more effectively and produced more seeds. Contrary to our initial assumptions, despite the moderately productive soil, communities of rosette forbs were very slow to invade with taller, leafier stem species. The ratio of invading graminoid biomass to sown species biomass was lowest on the irrigated, November cut treatments, suggesting that longer term persistence of many species is likely to be maximised on wetter soils when cut later in the year

    Environmental Horticulture Science and Management of Green Landscapes

    No full text
    This book reflects contemporary thinking and is supported by scientific evidence to show the role, value and application of horticulture in the landscape
    • 

    corecore