195 research outputs found

    Contrasting controls on the phosphorus concentration of suspended particulate matter under baseflow and storm event conditions in agricultural headwater streams

    Get PDF
    Whilst the processes involved in the cycling of dissolved phosphorus (P) in rivers have been extensively studied, less is known about the mechanisms controlling particulate P concentrations during small and large flows. This deficiency is addressed through an analysis of large numbers of suspended particulate matter (SPM) samples collected under baseflow (n = 222) and storm event (n = 721) conditions over a 23-month period across three agricultural headwater catchments of the River Wensum, UK. Relationships between clay mineral and metal oxyhydroxide associated elements were assessed and multiple linear regression models for the prediction of SPM P concentration under baseflow and storm event conditions were formulated. These models, which explained 71–96% of the variation in SPM P concentration, revealed a pronounced shift in P association from iron (Fe) dominated during baseflow conditions to particulate organic carbon (POC) dominated during storm events. It is hypothesised this pronounced transition in P control mechanism, which is consistent across the three study catchments, is driven by changes in SPM source area under differing hydrological conditions. In particular, changes in SPM Fe–P ratios between small and large flows suggest there are three distinct sources of SPM Fe; surface soils, subsurface sediments and streambed iron sulphide. Further examination of weekly baseflow data also revealed seasonality in the Fe–P and aluminium oxalate–dithionate (Alox–Aldi) ratios of SPM, indicating temporal variability in sediment P sorption capacity. The results presented here significantly enhance our understanding of SPM P associations with soil derived organic and inorganic fractions under different flow regimes and has implications for the mitigation of P originating from different sources in agricultural catchments

    Completing the hybridization triangle: the inheritance of genetic incompatibilities during homoploid hybrid speciation in ragworts (Senecio)

    Get PDF
    A new homoploid hybrid lineage needs to establish a degree of reproductive isolation from its parent species if it is to persist as an independent entity, but the role hybridization plays in this process is known in only a handful of cases. The homoploid hybrid ragwort species, Senecio squalidus, (Oxford ragwort) originated following the introduction of hybrid plants to the UK approximately 320 years ago. The source of the hybrid plants was from a naturally occurring hybrid zone between S. aethnensis and S. chrysanthemifolius on Mount Etna, Sicily. Previous studies of the parent species found evidence for multiple incompatibility loci causing transmission ratio distortion of genetic markers in their hybrid progeny. This study closes the hybridization triangle by reporting a genetic mapping analysis of the remaining two paired cross combinations between S. squalidus and its parents. Genetic maps produced from F2 mapping families were generally collinear but with half of the linkage groups showing evidence of genomic reorganization between genetic maps. The new maps produced from crosses between S. squalidus and each parent showed multiple incompatibility loci distributed across the genome, some of which co-locate with previously reported incompatibility loci between the parents. These findings suggest that this young homoploid hybrid species has inherited a unique combination of genomic rearrangements and incompatibilities from its parents that contribute to its reproductive isolation

    High-temporal Resolution Sediment Fingerprinting in the River Wensum Demonstration Test Catchment, UK: A Bayesian Approach

    Get PDF
    A high-temporal resolution fluvial sediment source apportionment model, set within an empirical Bayesian framework, is presented for the River Wensum Demonstration Test Catchment (DTC), UK. Direct X-ray fluorescence (XRF) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis of sediment covered filter papers were used in conjunction with ISCO automatic water samplers to monitor suspended particulate matter (SPM) geochemistry at high-temporal resolution throughout the progression of five heavy precipitation events during 2012-2013. Exploiting the spatial and temporal variation in four potential sediment source areas and SPM geochemistry respectively, we are able to apportion sediment contributions from eroding stream channel banks, arable topsoils, damaged road verges and agricultural field drains at 60-120 minute resolution. For all monitored precipitation episodes, pre- and post-event conditions are dominated by elevated SPM calcium concentrations that indicate major sediment inputs from carbonate-rich subsurface sources. Conversely, precipitation events coincide with an increase in concentrations of clay-associated elements and a consequent increase in predicted contributions from surface sources. Employing a Gibbs sampling Markov Chain Monte-Carlo mixing model procedure has enabled full characterisation of both spatial geochemical variability and instrument precision to quantify uncertainty around posterior distributions. All model source apportionment estimates correspond favourably with understanding of the regional geology, analysis of hysteresis behaviour, and visual observations of catchment processes. The results presented here demonstrate how to directly analyse SPM trapped on filter papers by spectroscopy to yield the high-temporal resolution source apportionment estimates required by catchment managers to help mitigate the deleterious effects of land-to-river sediment transfer

    Dissolved nitrous oxide (N2O) dynamics in agricultural field drains and headwater streams in an intensive arable catchment

    Get PDF
    Indirect nitrous oxide (N2O) emissions produced by nitrogen (N) leaching into surface water and groundwater bodies are poorly understood in comparison to direct N2O emissions from soils. In this study, dissolved N2O concentrations were measured weekly in both lowland headwater streams and subsurface agricultural field drain discharges over a two-year period (2013–2015) in an intensive arable catchment, Norfolk, UK. All field drain and stream water samples were found to have dissolved N2O concentrations higher than the water–air equilibrium concentration, illustrating that all sites were acting as a net source of N2O emissions to the atmosphere. Soil texture was found to significantly influence field drain N2O dynamics, with mean concentrations from drains in clay loam soils (5.3 µg N L-1) being greater than drains in sandy loam soils (4.0 µg N L-1). Soil texture also impacted upon the relationships between field drain N2O concentrations and other water quality parameters (pH, flow rate, and nitrate (NO3) and nitrite (NO2) concentrations), highlighting possible differences in N2O production mechanisms in different soil types. Catchment antecedent moisture conditions influenced the storm event mobilisation of N2O in both field drains and streams, with the greatest concentration increases recorded during precipitation events preceded by prolonged wet conditions. N2O concentrations also varied seasonally, with the lowest mean concentrations typically occurring during the summer months (JJA). Nitrogen fertiliser application rates and different soil inversion regimes were found to have no effect on dissolved N2O concentrations, whereas higher N2O concentrations recorded in field drains under a winter cover crop compared to fallow fields revealed cover crops are an ineffective greenhouse gas emission mitigation strategy. Overall, this study highlights the complex interactions governing the dynamics of dissolved N2O concentrations in field drains and headwater streams in a lowland intensive agricultural catchment

    Hydrogeological controls on regional-scale indirect nitrous oxide (N2O) emission factors for rivers

    Get PDF
    Indirect nitrous oxide (N2O) emissions from rivers are currently derived using poorly constrained default IPCC emission factors (EF5r) which yield unreliable flux estimates. Here, we demonstrate how hydrogeological conditions can be used to develop more refined regional-scale EF5r estimates required for compiling accurate national greenhouse gas inventories. Focusing on three UK river catchments with contrasting bedrock and superficial geologies, N2O and nitrate (NO3-) concentrations were analyzed in 651 river water samples collected from 2011 to 2013. Unconfined Cretaceous Chalk bedrock regions yielded the highest median N2O-N concentration (3.0 μg L-1), EF5r (0.00036) and N2O-N flux (10.8 kg ha-1 a-1). Conversely, regions of bedrock confined by glacial deposits yielded significantly lower median N2O-N concentration (0.8 μg L-1), EF5r (0.00016) and N2O-N flux (2.6 kg ha-1 a-1), regardless of bedrock type. Bedrock permeability is an important control in regions where groundwater is unconfined, with a high N2O yield from high permeability Chalk contrasting with significantly lower median N2O-N concentration (0.7 μg L-1), EF5r (0.00020) and N2O-N flux (2.0 kg ha-1 a-1) on lower permeability unconfined Jurassic mudstone. The evidence presented here demonstrates EF5r can be differentiated by hydrogeological conditions and thus provide a valuable proxy for generating improved regional-scale N2O emission estimates

    Combining Two Filter Paper-Based Analytical Methods to Monitor Temporal Variations in Fluvial Suspended Solid Properties

    Get PDF
    Many of the commonly used analytical techniques for assessing the properties of fluvial suspended solids are neither cost-effective nor time-efficient, making them prohibitive to long-term high-resolution monitoring.We propose a novel methodology utilising two types of spectroscopy which, when combined with automatic water samplers, can generate accurate, high-temporal resolution sediment property data, inexpensively and non-destructively, directly from sediment covered filter papers. A dual X-ray fluorescence spectroscopy (XRFS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) approach is developed to estimate concentrations for a range of elements (Al, Ca, Ce, Fe, K, Mg, Mn, Na, P, Si, Ti) and compounds (organic carbon, Aldithionate, Aloxalate, Fedithionate, and Feoxalate) within sediments trapped on quartz fibre filters at masses as low as 3 mg. Calibration models with small prediction errors are produced for a total of 16 elements and compounds for which the geochemical signal is demonstrated to be time stable enabling samples to be stored for several weeks prior to analysis. Spectral pre-processing methods are shown to enhance the reproducibility of results for some compounds, whilst corrections for sediment mass retention are derived, and the importance of filter paper selection and homogeneous sample preparation in minimising spectral interference are emphasized. The results presented here demonstrate the potential for a combined XRFS and DRIFTS analysis of sediment covered filter papers to be utilized under a range of in-stream hydrological conditions where there is an environmental requirement for high-resolution monitoring of suspended solid properties

    Mitigating river sediment enrichment through the construction of roadside wetlands

    Get PDF
    Metalled roads have been shown to act as a major pathway for land-to-river sediment transfer, but there currently exists limited research into mitigation solutions to tackle this pollution source. The aim of this study was to assess the effectiveness of three roadside constructed wetlands, installed in September 2016, at reducing sediment enrichment in a tributary of the River Wensum, UK. Two wetland designs were trialled (linear and ‘U-shaped’), both of which act as settling ponds to encourage entrained sediment to fall out of suspension and allow cleaner water to discharge into the river. Wetland efficiency was monitored through automated, high-resolution (30 min) turbidity probes installed upstream and downstream of the wetlands, providing a near-continuous record of river turbidity before (October 2011 – August 2016) and after (November 2016 – February 2018) installation. This was supplemented by lower resolution monitoring of the wetland inflows and outflows, as well as an assessment of sediment and nutrient accumulation rates within the linear wetland. Results revealed median river sediment concentrations decreased up to 14% after wetland construction and sediment load decreased by up to 82%, although this was largely driven by low river discharge post-installation. Median sediment concentrations discharging from the linear wetland (7.2 mg L-1) were higher than the U-shaped wetland (3.9 mg L-1), confirming that a longer flow pathway through wetlands can improve sediment retention efficiency. After 12 months of operation, the linear wetland had retained 7,253 kg (305 kg ha-1 y-1) of sediment, 11.6 kg (0.5 kg ha-1 y-1) of total phosphorus, 29.7 kg (1.3 kg ha-1 y-1) of total nitrogen and 400 kg (17 kg ha-1 y-1) of organic carbon. This translates into mitigated pollutant damage costs of £392 for sediment, £148 for phosphorus and £13 for nitrogen, thus giving a combined total mitigated damage cost of £553 y-1. With the linear wetland costing £3,411 to install and £145 – 182 y-1 to maintain, this roadside constructed wetland has an estimated payback time 8 years, making it a cost-effective pollution mitigation measure for tackling sediment-enriched road runoff that could be widely adopted at the catchment-scale

    Export Coefficient Modelling of Nutrient Neutrality to Protect Aquatic Habitats in the River Wensum Catchment, UK

    Get PDF
    The pressure of nutrient pollution derived from wastewater treatment works and agricultural runoff is a reason for the decline in the ecological health of aquatic habitats. Projected residential development in catchments creates further nutrient loading that can be offset by nutrient management solutions that maintain ‘nutrient neutrality’ either onsite or elsewhere within the same catchment. This study developed an export coefficient model in conjunction with detailed farm business data to explore a nature-based solution to nutrient neutrality involving seven scenarios of crop conversion to mixed woodland or grazing grass in an area of intensive arable cultivation in the groundwater-fed Blackwater sub-catchment of the River Wensum, UK. When compared with the monitored riverine export of nutrients, the calculated nitrogen (N) and phosphorus (P) inputs under current land use showed that subsurface denitrification is removing 48–78% of the leached N and that P is accumulating in the field soils. The addition of 235 residential homes planned for 2018–2038 in the Blackwater will generate an additional nutrient load of 190 kg N a−1 and 4.9 kg P a−1. In six of the seven scenarios, the modelled fractions of crop conversion (0.02–0.21) resulted in the required reduction in P loading and more than sufficient reduction in N loading (196–1874 kg a−1 for mixed woodland and 287–2103 kg a−1 for grazing grass), with the additional reduction in N load above the requirement for nutrient neutrality potentially contributing to further improvement in water quality. The cost of land conversion is modelled in terms of crop gross margins and nutrient credits generated in the form of 0.1 kg units of N or P. For the range of scenarios considered, the annual cost per credit ranged from GBP 0.78–11.50 for N for mixed woodland (GBP 0.74–7.85 for N for grazing grass) and from GBP 160–782 for P for both scenarios. It is concluded that crop conversion is a viable option to achieve nutrient neutrality in arable catchments in eastern England when considered together with other nutrient management solutions

    Patient perspectives on delays in diagnosis and treatment of cancer: a qualitative analysis of free-text data

    Get PDF
    Background: Earlier cancer diagnosis is crucial in improving cancer survival. The International Cancer Benchmarking Partnership Module 4 (ICBP4) is a quantitative survey study that explores the reasons for delays in diagnosis and treatment of breast, colorectal, lung, and ovarian cancer. To further understand the associated diagnostic processes, it is also important to explore the patient perspectives expressed in the free-text comments. Aim: To use the free-text data provided by patients completing the ICBP4 survey to augment the understanding of patients’ perspectives of their diagnostic journey. Design and setting: Qualitative analysis of the free-text data collected in Wales between October 2013 and December 2014 as part of the ICBP4 survey. Newly-diagnosed patients with either breast, ovarian, colorectal, or lung cancer were identified from registry data and then invited by their GPs to participate in the survey. Method: A thematic framework was used to analyse the free-text comments provided at the end of the ICBP4 survey. Of the 905 patients who returned a questionnaire, 530 included comments. Results: The free-text data provided information about patients’ perspectives of the diagnostic journey. Analysis identified factors that acted as either barriers or facilitators at different stages of the diagnostic process. Some factors, such as screening, doctor–patient familiarity, and private treatment, acted as both barriers and facilitators depending on the context. Conclusion: Factors identified in this study help to explain how existing models of cancer diagnosis (for example, the Pathways to Treatment Model) work in practice. It is important that clinicians are aware of how these factors may interact with individual clinical cases and either facilitate, or act as a barrier to, subsequent cancer diagnosis. Understanding and implementing this knowledge into clinical practice may result in quicker cancer diagnoses

    Indirect Nitrous Oxide Emission Factors for Agricultural Field Drains and Headwater Streams

    Get PDF
    Agriculture is a major source of nitrous oxide (N2O) emissions, a potent greenhouse gas. While direct N2O emissions from soils have been widely investigated, indirect N2O emissions from nitrogen (N) enriched surface water and groundwater bodies are poorly understood. In this contribution, indirect N2O emissions from subsurface agricultural field drains and headwater streams were monitored over a two-year period (2013–2015) in an intensive arable catchment in eastern England. Indirect N2O emission factors for groundwater (EF5g) and surface runoff (EF5r) were calculated for both field drain and streamwater samples, respectively, using two approaches: the N2O–N/NO3–N ratio and the IPCC (2006) methodology. Mean EF5g values derived from the N2O–N/NO3–N ratio were 0.0012 for field drains and 0.0003 for streamwater. Using the IPCC (2006) methodology, the mean EF5g values were 0.0011 for field drains and 0.0001 for streamwater. Thus, EF values derived from both methods were below the current IPCC (2006) default value of 0.0025 and a downward revision to 0.0012 for EF5g and 0.0002 for EF5r is recommended. Such revision would halve current estimates of N2O emissions associated with nitrogen leaching and runoff from agriculture for both the UK and globally
    • …
    corecore