82 research outputs found

    Methodology for classification and definition of epilepsy syndromes with list of syndromes: Report of the ILAE Task Force on Nosology and Definitions

    Get PDF
    Epilepsy syndromes have been recognized for \u3e50 years, as distinct electroclini-cal phenotypes with therapeutic and prognostic implications. Nonetheless, noformally accepted International League Against Epilepsy (ILAE) classification ofepilepsy syndromes has existed. The ILAE Task Force on Nosology and Definitionswas established to reach consensus regarding which entities fulfilled criteria for anepilepsy syndrome and to provide definitions for each syndrome. We defined an ep-ilepsy syndrome as “a characteristic cluster of clinical and electroencephalographicfeatures, often supported by specific etiological findings (structural, genetic, met-abolic, immune, and infectious).” The diagnosis of a syndrome in an individualwith epilepsy frequently carries prognostic and treatment implications. Syndromesoften have age- dependent presentations and a range of specific comorbidities. Thispaper describes the guiding principles and process for syndrome identification inboth children and adults, and the template of clinical data included for each syn-drome. We divided syndromes into typical age at onset, and further characterizedthem based on seizure and epilepsy types and association with developmental and/or epileptic encephalopathy or progressive neurological deterioration. Definitionsfor each specific syndrome are contained within the corresponding position papers

    International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions

    Get PDF
    The 2017 International League Against Epilepsy classification has defined a three-tier system with epilepsy syndrome identification at the third level. Although a syndrome cannot be determined in all children with epilepsy, identification of a specific syndrome provides guidance on management and prognosis. In this paper, we describe the childhood onset epilepsy syndromes, most of which have both mandatory seizure type(s) and interictal electroencephalographic (EEG) features. Based on the 2017 Classification of Seizures and Epilepsies, some syndrome names have been updated using terms directly describing the seizure semiology. Epilepsy syndromes beginning in childhood have been divided into three categories: (1) self-limited focal epilepsies, comprising four syndromes: self-limited epilepsy with centrotemporal spikes, self-limited epilepsy with autonomic seizures, childhood occipital visual epilepsy, and photosensitive occipital lobe epilepsy; (2) generalized epilepsies, comprising three syndromes: childhood absence epilepsy, epilepsy with myoclonic absence, and epilepsy with eyelid myoclonia; and (3) developmental and/or epileptic encephalopathies, comprising five syndromes: epilepsy with myoclonic-atonic seizures, Lennox-Gastaut syndrome, developmental and/or epileptic encephalopathy with spike-and-wave activation in sleep, hemiconvulsion-hemiplegia-epilepsy syndrome, and febrile infection-related epilepsy syndrome. We define each, highlighting the mandatory seizure(s), EEG features, phenotypic variations, and findings from key investigations

    Methodology for classification and definition of epilepsy syndromes with list of syndromes: Report of the ILAE Task Force on Nosology and Definitions

    Get PDF
    Epilepsy syndromes have been recognized for >50 years, as distinct electroclinical phenotypes with therapeutic and prognostic implications. Nonetheless, no formally accepted International League Against Epilepsy (ILAE) classification of epilepsy syndromes has existed. The ILAE Task Force on Nosology and Definitions was established to reach consensus regarding which entities fulfilled criteria for an epilepsy syndrome and to provide definitions for each syndrome. We defined an epilepsy syndrome as "a characteristic cluster of clinical and electroencephalographic features, often supported by specific etiological findings (structural, genetic, metabolic, immune, and infectious)." The diagnosis of a syndrome in an individual with epilepsy frequently carries prognostic and treatment implications. Syndromes often have age-dependent presentations and a range of specific comorbidities. This paper describes the guiding principles and process for syndrome identification in both children and adults, and the template of clinical data included for each syndrome. We divided syndromes into typical age at onset, and further characterized them based on seizure and epilepsy types and association with developmental and/or epileptic encephalopathy or progressive neurological deterioration. Definitions for each specific syndrome are contained within the corresponding position papers

    Galanin pathogenic mutations in temporal lobe epilepsy

    Get PDF
    Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatmen

    Australia\u27s health 1992 : the third biennial report of the Australian Institute of Health and Welfare

    Full text link
    Australia\u27s Health is the most comprehensive and authoritative source of national information on health in Australia. Australia\u27s Health is published mid-year in even-numbered years and provides national statistics and related information that form a record of health status, service provision and expenditure in Australia

    International League Against Epilepsy classification and definition of epilepsy syndromes with onset at a variable age: position statement by the ILAE Task Force on Nosology and Definitions

    Get PDF
    The goal of this paper is to provide updated diagnostic criteria for the epilepsy syndromes that have a variable age of onset, based on expert consensus of the International League Against Epilepsy Nosology and Definitions Taskforce (2017–2021). We use language consistent with current accepted epilepsy and seizure classifications and incorporate knowledge from advances in genetics, electroencephalography, and imaging. Our aim in delineating the epilepsy syndromes that present at a variable age is to aid diagnosis and to guide investigations for etiology and treatments for these patients

    PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine.

    Get PDF
    OBJECTIVE: Whole genome sequencing and the screening of 103 families recently led us to identify PRRT2 (proline-rich-transmembrane protein) as the gene causing infantile convulsions (IC) with paroxysmal kinesigenic dyskinesia (PKD) (PKD/IC syndrome, formerly ICCA). There is interfamilial and intrafamilial variability and the patients may have IC or PKD. Association of IC with hemiplegic migraine (HM) has also been reported. In order to explore the mutational and clinical spectra, we analyzed 34 additional families with either typical PKD/IC or PKD/IC with migraine. METHODS: We performed Sanger sequencing of all PRRT2 coding exons and of exon-intron boundaries in the probands and in their relatives whenever appropriate. RESULTS: Two known and 2 novel PRRT2 mutations were detected in 18 families. The p.R217Pfs*8 recurrent mutation was found in ≈50% of typical PKD/IC, and the unreported p.R145Gfs*31 in one more typical family. PRRT2 mutations were also found in PKD/IC with migraine: p.R217Pfs*8 cosegregated with PKD associated with HM in one family, and was also detected in one IC patient having migraine with aura, in related PKD/IC familial patients having migraine without aura, and in one sporadic migraineur with abnormal MRI. Previously reported p.R240X was found in one patient with PKD with migraine without aura. The novel frameshift p.S248Afs*65 was identified in a PKD/IC family member with IC and migraine with aura. CONCLUSIONS: We extend the spectrum of PRRT2 mutations and phenotypes to HM and to other types of migraine in the context of PKD/IC, and emphasize the phenotypic pleiotropy seen in patients with PRRT2 mutationsjournal articleresearch support, non-u.s. gov't2012 Nov 202012 10 17importedComment in : Paroxysmal disorders associated with PRRT2 mutations shake up expectations on ion channel genes. [Neurology. 2012

    <i>GRIN2A</i>-related disorders:genotype and functional consequence predict phenotype

    Get PDF
    Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment
    corecore