174 research outputs found

    The Efficacy of Neoadjuvant Androgen Deprivation Therapy as a Prostate Volume Reduction before Brachytherapy for Clinically Localized Prostate Cancer

    Get PDF
    From September 2003 to December 2005, 188 patients who visited our hospital and allied institutions for the purpose of prostate brachytherapy were administrated hormonal therapy for volume reductions before brachytherapy. The pretreatment and posttreatment of prostate volume using a transrectal ultrasound volumetric study and the types and duration of hormonal therapy were analyzed. We administered 91 patients with Luteinizing hormone-releasing hormone (LH-RH) agonist, 49 patients with anti-androgen (bicaltamide/flutamide), and 48 patients with maximum androgen blockade (MAB). The duration of the hormonal therapy was 1-3 months for 49 patients, 4-6 months for 59 patients, 7-9 months for 40 patients, 10-12 months for 32 patients, and over 13 months for 8 patients. Before the initiation of hormonal therapy, the mean prostate volume was 35.12 ml (11.04-78.71 ml), and the average of prostate volume before and after hormonal therapy was 36.79 ml and 24.79 ml, respectively (a 32.4% reduction). The prostate volume reduction rate was 32.0% for the LH-RH agonist only, 18.1% for the anti-androgen only and 41.2% for the MAB. No statistically significant difference was observed for the duration of hormonal therapy between 3 groups. A three-month course of the neoadjuvant LH-RH agonist indicated a sufficient volume reduction effectiveness for a large prostate volume.</p

    Isolation and characterization of novel polymorphic microsatellite loci for the deep-sea hydrothermal vent limpet, Lepetodrilus nux, and the vent-associated squat lobster, Shinkaia crosnieri

    Get PDF
    Recent genetic research has begun to reveal population structures of deep-sea, hydrothermal vent species, but detailed assessments of genetic diversity and connectivity in hydrothermal vent populations, based on multiple genetic loci, are still scarce, especially in the Northwest Pacific. Accordingly, we isolated 38 novel polymorphic microsatellite loci from the limpet, Lepetodrilus nux, and 14 from the squat lobster, Shinkaia crosnieri, two dominant hydrothermal vent species, using next-generation sequencing. These loci revealed polymorphism levels of 5–20 alleles per locus in L. nux and 5–25 in S. crosnieri. Observed and expected heterozygosities ranged from 0.240 to 0.960 and 0.283 to 0.938 in L. nux and from 0.450 to 0.950 and 0.620 to 0.941 in S. crosnieri, respectively. Twelve loci in L. nux and four loci in S. crosnieri showed significant deviation from Hardy–Weinberg equilibrium (p < 0.05). Microsatellite loci evaluated in this study will enable detailed measurements of genetic diversity and connectivity among populations, and better understanding of evolutionary divergence processes of L. nux and S. crosnieri in deep-sea communities in the Northwest Pacific

    Malt1-Induced Cleavage of Regnase-1 in CD4+ Helper T Cells Regulates Immune Activation

    Get PDF
    SummaryRegnase-1 (also known as Zc3h12a and MCPIP1) is an RNase that destabilizes a set of mRNAs, including Il6 and Il12b, through cleavage of their 3′ UTRs. Although Regnase-1 inactivation leads to development of an autoimmune disease characterized by T cell activation and hyperimmunoglobulinemia in mice, the mechanism of Regnase-1-mediated immune regulation has remained unclear. We show that Regnase-1 is essential for preventing aberrant effector CD4+ T cell generation cell autonomously. Moreover, in T cells, Regnase-1 regulates the mRNAs of a set of genes, including c-Rel, Ox40, and Il2, through cleavage of their 3′ UTRs. Interestingly, T cell receptor (TCR) stimulation leads to cleavage of Regnase-1 at R111 by Malt1/paracaspase, freeing T cells from Regnase-1-mediated suppression. Furthermore, Malt1 protease activity is critical for controlling the mRNA stability of T cell effector genes. Collectively, these results indicate that dynamic control of Regnase-1 expression in T cells is critical for controlling T cell activation

    Hepatitis B virus strains of subgenotype A2 with an identical sequence spreading rapidly from the capital region to all over Japan in patients with acute hepatitis B

    Get PDF
    ObjectiveTo examine recent trends of acute infection with hepatitis B virus (HBV) in Japan by nationwide surveillance and phylogenetic analyses.MethodsDuring 1991 through 2009, a sentinel surveillance was conducted in 28 national hospitals in a prospective cohort study. Genotypes of HBV were determined in 547 patients with acute hepatitis B. Nucleotide sequences in the preS1/S2/S gene of genotype A and B isolates were determined for phylogenetic analyses.ResultsHBV genotype A was detected in 137 (25% (accompanied by genotype G in one)) patients, B in 48 (9%), C in 359 (66%), and other genotypes in the remaining three (0.5%). HBV persisted in five with genotype A including the one accompanied by genotype G; another was co-infected with HIV type 1. The genotype was A in 4.8% of patients during 1991-1996, 29.3% during 1997-2002, and 50.0% during 2003-2008 in the capital region, as against 6.5%, 8.5% and 33.1%, respectively, in other regions. Of the 114 genotype A isolates, 13 (11.4%) were subgenotype A1, and 101 (88.6%) were A2, whereas of the 43 genotype B isolates, 10 (23.3%) were subgenotype B1, 28 (65.1%) were B2, two (4.7%) were B3, and three (7.0%) were B4. Sequences of 65 (64%) isolates of A2 were identical, as were three (23%) of A1, and five (18%) of B2, but none of the B1, B3 and B4 isolates shared a sequence.ConclusionsAcute infection with HBV of genotype A, subgenotype A2 in particular, appear to be increasing, mainly through sexual contact, and spreading from the capital region to other regions in Japan nationwide. Infection persisted in 4% of the patients with genotype A, and HBV strains with an identical sequence prevailed in subgenotype A2 infections. This study indicates the need for universal vaccination of young people to prevent increases in HBV infection in Japan

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
    corecore