81 research outputs found

    Hexanucleotide motifs mediate recruitment of the RNA elimination machinery to silent meiotic genes

    Get PDF
    The selective elimination system blocks the accumulation of meiosis-specific mRNAs during the mitotic cell cycle in fission yeast. These mRNAs harbour a region, the determinant of selective removal (DSR), which is recognized by a YTH-family RNA-binding protein, Mmi1. Mmi1 directs target transcripts to destruction in association with nuclear exosomes. Hence, the interaction between DSR and Mmi1 is crucial to discriminate mitosis from meiosis. Here, we show that Mmi1 interacts with repeats of the hexanucleotide U(U/C)AAAC that are enriched in the DSR. Disruption of this ‘DSR core motif’ in a target mRNA inhibits its elimination. Tandem repeats of the motif can function as an artificial DSR. Mmi1 binds to it in vitro. Thus, a core motif cluster is responsible for the DSR activity. Furthermore, certain variant hexanucleotide motifs can augment the function of the DSR core motif. Notably, meiRNA, which composes the nuclear Mei2 dot required to suppress Mmi1 activity during meiosis, carries numerous copies of the core/augmenting motifs on its tail and is indeed degraded by the Mmi1/exosome system, indicating its likely role as decoy bait for Mmi1

    Targeting oxytocin receptor (Oxtr)-expressing neurons in the lateral septum to restore social novelty in autism spectrum disorder mouse models

    Get PDF
    © 2020, The Author(s). Autism spectrum disorder (ASD) is a continuum of neurodevelopmental disorders and needs new therapeutic approaches. Recently, oxytocin (OXT) showed potential as the first anti-ASD drug. Many reports have described the efficacy of intranasal OXT therapy to improve the core symptoms of patients with ASD; however, the underlying neurobiological mechanism remains unknown. The OXT/oxytocin receptor (OXTR) system, through the lateral septum (LS), contributes to social behavior, which is disrupted in ASD. Therefore, we selectively express hM3Dq in OXTR-expressing (OXTR+) neurons in the LS to investigate this effect in ASD mouse models developed by environmental and genetic cues. In mice that received valproic acid (environmental cue), we demonstrated successful recovery of impaired social memory with three-chamber test after OXTR+ neuron activation in the LS. Application of a similar strategy to Nl3R451C knock-in mice (genetic cue) also caused successful recovery of impaired social memory in single field test. OXTR+ neurons in the LS, which are activated by social stimuli, are projected to the CA1 region of the hippocampus. This study identified a candidate mechanism for improving core symptoms of ASD by artificial activation of DREADDs, as a simulation of OXT administration to activate OXTR+ neurons in the LS

    Phosphorylation of the RSRSP stretch is critical for splicing regulation by RNA-Binding Motif Protein 20 (RBM20) through nuclear localization

    Get PDF
    RBM20 is a major regulator of heart-specific alternative pre-mRNA splicing of TTN encoding a giant sarcomeric protein titin. Mutation in RBM20 is linked to autosomal-dominant familial dilated cardiomyopathy (DCM), yet most of the RBM20 missense mutations in familial and sporadic cases were mapped to an RSRSP stretch in an arginine/serine-rich region of which function remains unknown. In the present study, we identified an R634W missense mutation within the stretch and a G1031X nonsense mutation in cohorts of DCM patients. We demonstrate that the two serine residues in the RSRSP stretch are constitutively phosphorylated and mutations in the stretch disturb nuclear localization of RBM20. Rbm20 S637A knock-in mouse mimicking an S635A mutation reported in a familial case showed a remarkable effect on titin isoform expression like in a patient carrying the mutation. These results revealed the function of the RSRSP stretch as a critical part of a nuclear localization signal and offer the Rbm20 S637A mouse as a good model for in vivo study

    Diffusion functional MRI reveals global brain network functional abnormalities driven by targeted local activity in a neuropsychiatric disease mouse model

    Get PDF
    Diffusion functional magnetic resonance imaging (DfMRI) has been proposed as an alternative functional imaging method to detect brain activity without confounding hemodynamic effects. Here, taking advantage of this DfMRI feature, we investigated abnormalities of dynamic brain function in a neuropsychiatric disease mouse model (glial glutamate transporter-knockdown mice with obsessive-compulsive disorder [OCD]-related behavior). Our DfMRI approaches consisted of three analyses: resting state brain activity, functional connectivity, and propagation of neural information. We detected hyperactivation and biased connectivity across the cortico-striatal-thalamic circuitry, which is consistent with known blood oxygen-level dependent (BOLD)-fMRI patterns in OCD patients. In addition, we performed ignition-driven mean integration (IDMI) analysis, which combined activity and connectivity analyses, to evaluate neural propagation initiated from brain activation. This analysis revealed an unbalanced distribution of neural propagation initiated from intrinsic local activation to the global network, while these were not detected by the conventional method with BOLD-fMRI. This abnormal function detected by DfMRI was associated with OCD-related behavior. Together, our comprehensive DfMRI approaches can successfully provide information on dynamic brain function in normal and diseased brains

    CLICK:One-step generation of conditional knockout mice

    Get PDF
    Abstract Background CRISPR/Cas9 enables the targeting of genes in zygotes; however, efficient approaches to create loxP-flanked (floxed) alleles remain elusive. Results Here, we show that the electroporation of Cas9, two gRNAs, and long single-stranded DNA (lssDNA) into zygotes, termed CLICK (CRISPR with lssDNA inducing conditional knockout alleles), enables the quick generation of floxed alleles in mice and rats. Conclusions The high efficiency of CLICK provides homozygous knock-ins in oocytes carrying tissue-specific Cre, which allows the one-step generation of conditional knockouts in founder (F0) mice

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Dosimetric advantages of O-ring design radiotherapy system for skull-base tumors

    Get PDF
    The purpose of this study was to investigate whether a new O-ring design radiotherapy delivery system has advantages in radiotherapy planning for skull-base tumors. Twenty-five patients with skull-base tumors were included in this study. Two plans were made using conventional (Plan A) or new (Plan B) techniques. Plan A consisted of four dynamic conformal arcs (DCAs): two were horizontal, and the other two were from cranial directions. Plan B was created by converting horizontal arcs to those from caudal directions making use of the O-ring design radiotherapy system. The micromultileaf collimators were fitted to cover at least 99% of the planning target volume with prescribed doses, 90% of the dose at the isocenter. The two plans were compared in terms of target homogeneity, conformity, and irradiated volume of normal tissues, using a two-sided paired t-test. For evaluation regarding target coverage, the homogeneity indices defined by the International Commission on Radiation Units and Measurements 83 were 0.099± 0.010 (mean± standard deviation) and 0.092 ± 0.010, the conformity indices defined by the Radiation Therapy Oncology Group were 1.720 ± 0.249 and 1.675± 0.239, and the Paddick’s conformity indices were 0.585 ± 0.078 and 0.602 ± 0.080, in Plans A and B, respectively. For evaluation of irradiated normal tissue, the Paddick’s gradient indices were 3.118 ± 0.283 and 2.938 ± 0.263 in Plans A and B, respectively. All of these differences were statistically significant (p-values < 0.05). The mean doses of optic nerves, eyes, brainstem, and hippocampi were also significantly lower in Plan B. The DCA technique from caudal directions using the new O-ring design radiotherapy system can improve target homogeneity and conformity compared with conventional DCA techniques, and can also decrease the volume of surrounding normal tissues that receives moderate doses

    Suppression of X-ray-induced dissociation of H2O molecules in dense ice under pressure

    Full text link
    Nove MR tehnike koje su razvijene zahvaljujući napredku hardvera i odgovarajuće softverske podrške omogućile su dobijanje kvalitativno novih informacija koje pomažu u dijagnostici, razlikovanju i planiranju tretmana različitih patologija u neuroradiologiji. MR perfuzija je neinvazivna,vrlo jednostavna MR tehnika koja omogućuje istovremeni prikaz hemodinamskih i anatomskih informacija. U svakodnevnom kliničkom radu pomaže u razlikovanju i stupnjevanju različitih primarnih i sekundarnih tm procesa mozga, u odabiru najoptimalnijeg dijela tm procesa za stereotaksijsku biopsiju, praćenju učinka terapije te razlikovanju terapijom uvjetovanih promjena od tumorskog recidiviranja. Uvijek se primjenjuje u kombinaciji sa konvencionalnim i posebnim MR tehnikama poput MR spektroskopije i MR difuzije što dodatno povećava specifičnost i osjetljivost iste. Sve navedeno upućuje na zaključak da bi MR perfuzija trebala biti standardni dio MR protokola u dijagnostici tm lezija mozga.New MRI techniques that have been developed thanks to the progress of the hardware and the corresponding software support made it possible to obtain a qualitatively new information that assist in the diagnosis, treatment planning and differentiation of various pathologies in neuroradiology. MR perfusion is non-invasive, very simple MRI technique that allows the simultaneous display of hemodynamic and anatomic information. In everyday clinical practice helps in differentiating and grading of various primary and secondary tm processes of the brain, in choosing the most optimal portion tm process for stereotactic biopsy, monitoring the effect of therapy and differentiating therapy controlled changes of tumor recurrence. It always be used in combination with conventional and special MRI techniques, such as MR spectroscopy and MR diffusion which further increase the specificity and sensitivity of the same. All of the above leads to the conclusion that the MR perfusion should be a standard part of the MRI protocol in diagnosing tm brain lesion
    corecore