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The purpose of this study was to investigate whether a new O-ring design radio-
therapy delivery system has advantages in radiotherapy planning for skull-base 
tumors. Twenty-five patients with skull-base tumors were included in this study. 
Two plans were made using conventional (Plan A) or new (Plan B) techniques. 
Plan A consisted of four dynamic conformal arcs (DCAs): two were horizontal, 
and the other two were from cranial directions. Plan B was created by converting 
horizontal arcs to those from caudal directions making use of the O-ring design 
radiotherapy system. The micromultileaf collimators were fitted to cover at least 
99% of the planning target volume with prescribed doses, 90% of the dose at the 
isocenter. The two plans were compared in terms of target homogeneity, conformity, 
and irradiated volume of normal tissues, using a two-sided paired t-test. For evalua-
tion regarding target coverage, the homogeneity indices defined by the International 
Commission on Radiation Units and Measurements 83 were 0.099 ± 0.010 (mean ± 
standard deviation) and 0.092 ± 0.010, the conformity indices defined by the 
Radiation Therapy Oncology Group were 1.720 ± 0.249 and 1.675 ± 0.239, and the 
Paddick’s conformity indices were 0.585 ± 0.078 and 0.602 ± 0.080, in Plans A and 
B, respectively. For evaluation of irradiated normal tissue, the Paddick’s gradient 
indices were 3.118 ± 0.283 and 2.938 ± 0.263 in Plans A and B, respectively. All 
of these differences were statistically significant (p-values < 0.05). The mean doses 
of optic nerves, eyes, brainstem, and hippocampi were also significantly lower in 
Plan B. The DCA technique from caudal directions using the new O-ring design 
radiotherapy system can improve target homogeneity and conformity compared 
with conventional DCA techniques, and can also decrease the volume of surround-
ing normal tissues that receives moderate doses.

PACS numbers: 87.55.-x, 87.55.D-, 87.55.dk

Key words: dynamic conformal arc radiotherapy, dosimetric comparison, 
O-ring design radiotherapy system, skull-base tumors, fractionated stereotactic 
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I. IntrODuctIOn

Fractionated stereotactic radiotherapy (FSRT) is a sophisticated technique for intracranial 
tumors. For large skull-base tumors, such as pituitary adenoma (macroadenoma) and sellar 
or parasellar meningioma, definitive surgical approaches are sometimes difficult because of 
surrounding eloquent structures, and FSRT is well indicated for such cases. The dynamic 
conformal arc (DCA) technique is a useful approach in FSRT.(1) This has become available 
with the introduction of multileaf collimators (MLCs). The shape of the radiation field in each 
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beam’s eye view is fitted to the target volume throughout the arc length, which yields high 
dose conformity to the targets. 

In conventional C-arm linear accelerator (linac) systems, arc arrangement from caudal 
directions is usually difficult because of the risk of collision between the gantry head and the 
patient. For small tumors, arcs from only horizontal and cranial directions would be sufficient to 
achieve high dose homogeneity to the target. However, for large tumors, these are occasionally 
insufficient because the dose distribution within the targets becomes inhomogeneous from the 
cranial to caudal direction, such that fewer doses are delivered to the caudal part of the target. 
In this regard, we hypothesized that the characteristics of a new O-ring design radiotherapy sys-
tem, vero4DRT (Mitsubishi Heavy Industries, Ltd., Tokyo, Japan, and BrainLAB, Feldkirchen, 
Germany) would yield further improvements in target conformity and homogeneity, compared 
with conventional DCA techniques. 

The vero4DRT has a unique configuration. The details are described elsewhere.(2,3) In brief, 
a 6 megavolt ultracompact and light-weight C-band linac with 5 mm width MLCs are mounted 
on the inside of a rigid O-ring–shaped gantry and is designed to rotate 360° along the inner 
surface of the O-ring. Additionally, the O-ring gantry, per se, can be rotated ± 60° around the 
vertical axis of the O-ring. This enables delivery of noncoplanar beams from both cranial and 
caudal directions without movement of the treatment couch (Fig. 1). In addition, electronic 
portal-imaging devices, two sets of kilovoltage (kV) X-ray tubes and flat-panel detectors, and 
a kV-level cone-beam computed tomography (CT) platform, are mounted on the gantry. The 
treatment couch can translate right-to-left, superior-to-posterior, and anterior-to-posterior, and 
can also rotate in both the pitch and roll planes. Use of such tools allows of high-precision, 
image-guided patient setup.(4) The MLC of the delivery systems is regular in type, as opposed 
to a binary MLC (such as employed in tomotherapy). The treatment couch does not translate 
or rotate during irradiation. The MLC is of single-focus, has 30 pairs of 5 mm wide leaves at 
the isocenter, and produces a maximum treatment field of 150 × 150 mm2.(5) 

The aim of this study was to investigate whether the new O-ring design radiotherapy system, 
vero4DRT, has advantages in radiotherapy planning for intracranial tumors. We performed a 
dosimetric comparison of treatment planning with and without DCAs from caudal directions 
for large skull-base tumors.

 

Fig. 1. External appearance of O-ring rotation. The O-ring can be rotated around its vertical axis without any couch move-
ment (indicated by arrows). Examples of rotation angles of 340° and 20° (counterclockwise or clockwise), are shown.
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II. MAtErIALS AnD MEtHODS

A.  tumor characteristics
Twenty-five patients with skull-base tumors (11 pituitary adenomas, eight meningiomas, and six 
craniopharyngiomas) were included in this replanning study. All had large tumors, which were 
difficult to resect completely, and previously underwent conventional FSRT (50.4 – 54 Gy in 
28 – 30 fractions). We chose sellar or parasellar skull-base tumors of various sizes and shapes, 
and excluded extremely irregular tumors, which were treated with intensity-modulated radio-
therapy. The median planning target volume (PTV) was 23.16 cc (range, 7.10 – 68.71). 

B.  treatment planning
Treatment planning was conducted using previously acquired computed tomography images 
and the iPlan RT Dose planning system, version 4.5.1 (BrainLAB). The CT images of 1.25 mm 
slice thickness were acquired using a Light Speed RT scanner (GE Healthcare, Milwaukee, 
WI). Patients were immobilized in a thermoplastic mask with an additional bite block and 
infrared reflecting markers (BrainLAB) on the surface of the mask. Contrast-enhanced magnetic 
resonance imaging (MRI) scans were fused with planning CT images using iPlan RT Image 
version 4.1.2 (BrainLAB). Clinical target volume (CTV) was defined as residual gross tumors 
— except cases of craniopharyngioma, in which the CTV was defined as residual gross tumors 
and 5 mm thick areas of the normal brain tissue attached to the tumors on preoperative MRI 
images. Then, the PTV was defined as the CTV plus a 2 mm margin, to account for setup errors 
and patient motion. In addition, lenses, eyes, optic nerves, optic chiasm, brainstem, temporal 
lobes, hippocampi, cochleae, and parotid glands were contoured as organs at risk (OARs). The 
hippocampal contouring was based on the report by Gondi et al.(6)

Two plans were made using conventional (Plan A) and new (Plan B) techniques, as shown in 
Fig. 2. Both plans were made using the same treatment planning systems (vero4DRT and iPlan) 
to exclude the effects of all parameters other than arc direction. Plan A was a conventional plan 
produced using the vero4DRT and iPlan systems. Plan A consisted of four DCAs. Two were 
horizontal arcs, or the O-ring rotation angles were 0°. The other two arcs were from cranial 
directions, or the O-ring rotation angles were set to 40° – 45° or 315° – 320°. This arc arrange-
ment is typical in our daily clinical practice and is also similar to that used for DCA plans in the 
literature.(1) Vulnerable organs such as lenses were avoided as much as possible by adjusting 
the length of each arc. Next, the MLCs were fitted to cover at least 99% of the planning target 
volume (PTV) with the prescribed dose, which was 90% of the dose at the isocenter. To simplify 

Fig. 2. Three-dimensional views of the conventional and new treatment planning. A representative case of pituitary 
adenoma is shown. A planning target volume is indicated in magenta. Plan A is a conventional arrangement composed of 
four dynamic conformal arcs, two horizontal arcs and the remaining two from cranial directions. Plan B is a new method, 
which includes two arcs from caudal directions. 
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the comparison between the new technique (Plan B) and the conventional planning (Plan A), 
we modified Plan A by converting only horizontal arcs to those from caudal directions (Plan B). 
The rotation angles of the O-ring were set to 15° – 20° or 340° – 345°, to take into account the 
interference between the patients/couch and the gantry head/O-ring itself. The lengths of arcs 
were also modified if lenses were included in the beam’s eye view of the targets.

c.  Dosimetric comparison
The two techniques were compared in terms of target homogeneity, target conformity and 
irradiated volume of normal tissues. The dose calculations were performed using the radiologi-
cal path length method for tissue heterogeneity correction. The grid size of the dose volume 
histogram (DVH) calculation was set to 2.0 mm. 

Target homogeneity was quantified by the homogeneity index (HI) defined in Report 83 of 
the International Commission on Radiation Units and Measurements (ICRU) as HI = (D2% - 
D98%)/D50%, where D2%, D98%, and D50% are the doses covering at least 2%, 98%, and 50% 
of the PTV, respectively. Target conformity was quantified using the conformity index (CI) 
defined by the Radiation Therapy Oncology Group (CIRTOG)(7) as: CIRTOG = PIV/TV, where PIV 
is the whole tissue volume receiving the prescribed dose (90% of the dose at the isocenter) and 
TV is volume of PTV. In addition, target conformity was evaluated by the index described by 
Paddick et al. (CIPaddick)

(8) as: CIPaddick = VPTV_PI
2/(PIV × TV), where VPTV_PI is the volume of 

PTV receiving at least the prescribed dose. Irradiated volume of normal tissue and dose gradient 
were analyzed by comparing the isodose volumes (IDVs), known as Paddick’s gradient index 
(PGI):(9) PGI = 50%/100%IDVs, where the prescribed dose was normalized to 100%IDV. For 
evaluation of the normal tissue volume receiving much lower doses, modified PGI (mPGI) was 
also defined as: mPGI = 20%/100%IDVs. 

D.  Statistical analysis
For statistical analysis, we used the statistical software environment R, version 2.15.0 (http://
www.r-project.org). To confirm the null hypothesis that the differences between Plan A and 
Plan B parameters were zero, we applied the two-sided paired t-test. P-values < 0.05 were 
considered to indicate statistical significance.

 
III. rESuLtS 

Table 1 summarizes the result of each index (mean ± standard deviation (SD)). All indices 
of target homogeneity and conformity (HI, CIRTOG, and CIPaddick) in Plan B were improved 
significantly. A representative case is shown in Fig. 3. In terms of irradiated normal tissues, 
PGI decreased and mPGI increased in Plan B, both with statistical significance. Thus the vol-
umes of normal tissues irradiated with a moderate dose (50% of the prescribed isodoses) were 
significantly decreased in Plan B, whereas the volumes with much lower doses (20% of the 
prescribed isodose) were significantly increased in Plan B. 

Table 2 summarizes the mean and/or max dose of OARs (%). The dose at the isocenter was 
normalized to 100%. The mean doses of optic nerves, eyes, brainstem, and hippocampi, and 
the maximum doses of eyes were significantly decreased in Plan B. In contrast, the mean doses 
of both parotid glands were significantly increased in Plan B.
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Table 1. Summary of indices in Plans A and B.

 Plan A Plan B Mean Difference
  (conventional) (new) Plan B – Plan A
   Mean±SD (range)  (95% CI) p-value

 HI 0.099±0.010 0.092±0.010 -0.007
  (0.084−0.119) (0.069−0.106) (-0.011 to -0.004) <0.001

 CIRTOG
 1.720±0.249  1.675±0.240 -0.045

  (1.353−2.339) (1.313−2.334) (-0.075 to -0.015) 0.005

 CIPaddick
 0.585±0.078  0.602±0.080 +0.016

  (0.424−0.732) (0.423−0.751) (+0.008 to +0.025) <0.001

 PGI 3.118±0.283  2.938±0.263 -0.179
  (2.618−3.737) (2.566−3.502) (-0.221 to -0.137) <0.001

 mPGI 11.533±1.629  12.254±1.410 +0.720
  (8.238−14.845)  (9.573−14.845) (+0.530 to +0.910) <0.001

CIPaddick = conformity index defined by Paddick et al.; CIRTOG = CI defined by the Radiation Therapy Oncology Group 
(RTOG); HI = homogeneity index; mPGI = modified PGI; PGI = Paddick’s gradient index; SD = standard deviation. 

Fig. 3. A representative case in which target coverage was improved. Coronal images of dose distributions in Plans A and 
B and the dose-volume histogram are shown. Target coverage of the caudal part was improved in Plan B (see 95% isodose 
line indicated as an orange line). The dose-volume histogram of planning target volume also shows the improvement in 
Plan B. In addition, the volume of the bilateral temporal lobes that received moderate doses was decreased in Plan B. 
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IV. DIScuSSIOn

In this study, we demonstrated the advantages of DCA techniques with the vero4DRT in terms of 
both target conformity and homogeneity. Beams/arcs from caudal directions can compensate for 
dose deficiency at the caudal parts of large skull-base tumors, which would be underdosed areas 
if beams/arcs from only cranial directions could be available. The change in the absolute value 
of these indices might be a little, but improved with statistically significant levels. We believe 
that this tendency is a unique characteristic and a mechanical advantage of the O-ring design 
radiotherapy system, vero4DRT. In addition, moderate doses to normal tissue were decreased 
in Plan B, whereas lower doses were increased. We used PGI/mPGI to evaluate these ranges 
of doses. Moderate and lower doses in our study corresponded to around 25 Gy and 10 Gy, 

Table 2. Summary of the maximum and mean doses to organs at risk.

 Plan A  Plan B Mean Difference
 (conventional)  (new) Plan B – Plan A
 Mean±SD (range) (%)a (95% CI) p-value

 Rt. OPN  85.3±27.4 84.9±28.0 -0.47
 (max. dose) (13.1−103.2) (14.4−102.4) (-1.32 to +0.38) 0.266
 Rt. OPN  34.8±17.6 33.0±17.6 -1.79
 (mean dose) (5.1−67.5) (4.8−67.7) (-2.51 to -1.07) <0.001
 Lt. OPN  88.1±27.8 87.6±29.2 -0.54
 (max. dose) (8.6−103.0) (8.7−102.5) (-1.34 to -0.26) 0.176
 Lt. OPN  35.4±17.3 33.4±17.0 -2.01
 (mean dose) (2.8−61.0) (2.8−61.1) (-2.88 to -1.15) <0.001
 Rt. Eye  7.9±3.4 6.1±2.7 -1.74
 (max. dose) (1.2−14.5) (1.2−11.7) (-2.51 to -0.96) <0.001
 Rt. Eye  2.1±0.9 1.8±0.7 -0.25
 (mean dose) (0.9−3.9) (0.8−3.7) (-0.38 to -0.13) <0.001
 Lt. Eye  9.2±4.7 7.7±4.6 -1.52
 (max. dose) (4.1−23.0) (2.3−24.3) (-2.19 to -0.85) <0.001
 Lt. Eye  2.4±1.1 2.1±1.0 -0.30
 (mean dose)  (0.9−4.9) (0.8−4.8) (-0.43 to -0.18) <0.001
 Chiasm  93.5±19.0 93.4±18.5 -0.04
 (max. dose) (17.7−103.7) (20.9−103.1) (-0.62 to +0.53) 0.876
 Chiasm  83.8±26.2 83.6±26.1 -0.20
 (mean dose)  (11.3−103.0) (12.4−102.1) (-1.20 to +0.80) 0.684
 Brainstem  36.0±14.8 35.4±15.0 -0.60
 (mean dose) (13.2−66.3) (12.9−64.3) (-1.09 to -0.11) 0.020
 Rt. PG  6.5±2.9 8.7±4.5 +2.20
 (mean dose) (2.6−16.5) (2.6−25.2) (+1.40 to +3.00) <0.001
 Lt. PG  6.3±2.3 8.8±3.8 +2.52
 (mean dose) (2.6−11.6) (2.6−18.5) (+1.62 to +3.43) <0.001
 Rt. cochlea  42.0±24.2 43.0±23.2 +0.98
 (max. dose) (12.0−95.5) (18.9−94.7) (-0.74 to +2.69) 0.251
 Lt. cochlea  41.1±23.2 41.8±22.1 +0.76
 (max. dose) (11.8−96.3) (17.8−97.0) (-1.08 to +2.61) 0.402
 Rt. Hippo  32.8±10.4 30.4±10.7 -2.37
 (mean dose) (12.0−48.7) (11.2−47.4) (-3.32 to -1.43) <0.001
 Lt. Hippo  35.5±16.3 33.5±16.7 -2.01
 (mean dose) (7.6−73.9) (6.8−74.4) (-3.12 to -0.90) 0.001

a Relative doses are presented (The dose distribution calculation was normalized to 100% at the isocenter).
Hippo = hippocampus; Lt. = left; OPN = optic nerve; PG = parotid gland; Rt. = right.
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respectively. Increases in moderate doses in Plan A should be due to opposed horizontal arcs, 
whereas increases in lower doses in Plan B should be due to the caudal arcs which resulted in 
more irradiated volume. The life expectancy of patients with benign brain tumors is thought to 
be long and so the risk of second malignancy must be considered. Few data regarding whether 
a decrease in normal tissue with moderate doses and an increase in that with lower doses are 
clinically preferable are available. Galloway et al.(10) reported the site of second tumor formation 
after radiotherapy to the central nervous system; the most common location of the second tumors 
was in tissue that received a moderate dose (20 – 36 Gy). They concluded that a decrease in 
the brain volume that receives a moderate radiation dose is the most important factor. We also 
showed that the DCAs technique with the vero4DRT results in a decrease in the tissue volume 
receiving a moderate dose, compared with the conventional techniques.

The irradiated doses to OARs in Plans A and B were both within conventionally tolerated 
limits, according to the report of Emami et al.(11) or Quantitative Analysis of Normal Tissue 
Effects in the Clinic (QUANTEC).(12) Plan B has an advantage in decreasing doses to hip-
pocampi, whereas it has a tendency to increase doses to parotid glands. When treating skull-
base tumors, beam entry of caudal arcs often runs through ipsilateral parotid glands and should 
result in significant increases of doses to them. On the other hand, caudal arcs should decrease 
irradiated doses to temporal lobes, whereas opposing horizontal arcs should increase the doses. 
In both cases, irradiated doses to temporal lobes are within tolerable limits in terms of radiation 
necrosis, but may lead to neurocognitive dysfunction. Some investigators have reported cognitive 
decline after definitive radiotherapy, and a correlation between cognitive decline and dose to 
the temporal lobes.(13-15) Recently, the hippocampus has been reported to be a key component 
with regard to neurocognitive deficits after cranial irradiation.(16) The relationships between the 
irradiation doses delivered to the hippocampus and the occurrence of neurocognitive dysfunc-
tion remains to be elucidated; however, some studies have reported that much lower doses can 
lead to neurological sequelae.(17) Considering the long clinical courses of benign brain tumors, 
decreasing the doses to the hippocampi might be preferable. A representative case, in which 
the dose to the left hippocampus was decreased, is shown in Fig. 4.

Fig. 4. A representative case in which the irradiation dose to the left hippocampus was decreased. Coronal images of dose 
distributions in Plans A and B are shown. The irradiation dose received by the left hippocampus (purple shaded area) was 
decreased in Plan B. The dose volume histogram clearly shows the difference between Plans A and B.
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In daily clinical practice, the vero4DRT would yield high patient throughput and be more 
comfortable because it can deliver noncoplanar arcs without any couch/patient movement. In 
conventional C-arm linacs, radiotherapists or staff members are required to enter the treatment 
room for each couch rotation; however, this is not the case for the vero4DRT, and the O-ring 
gantry can rotate and enable delivery of noncoplanar beams without any couch movement. 
Accordingly, the treatment time required is expected to be less. This is also preferable and 
more comfortable for the treated patient. 

The vero4DRT has some mechanical limitations. First, the MLC width of vero4DRT is 
not very thin (5 mm), and the collimator cannot be rotated. Accordingly, the MLCs cannot 
be fully adjusted to concave and/or irregularly shaped tumors. We are at present developing a 
new model with 2.5 mm wide MLCs. Several reports show the impact of MLC width on target 
conformity and sparing of surrounding tissue.(18,19) The version in development will achieve 
more conformal planning for irregularly shaped tumors. Second, DCAs from cranial directions 
are not fully available using the vero4DRT compared with conventional C-arm linacs, which 
can deliver even vertex arcs (couch angle = 90°). Rotational angles of the O-ring around the 
vertical axis are mechanically limited to ± 60°, and in the clinical setting ± 45° – 50° O-ring 
angles are limiting when using DCAs from cranial directions. This range of motion seems to 
be narrow, but large angular arcs, such as vertex arcs, should be avoided because the beams 
run through the full length of the body. In addition, DCAs from caudal directions would be 
able to compensate for these limitations in target coverage. Third, collision between the gantry 
head/O-ring and the patients/couch would likely be an issue for tumors located at other sites in 
the brain, such as more anterior or lateral sides, whereas sellar or parasellar tumors are located 
close to the center of the brain. In this report, we discussed using DCAs from caudal direc-
tions for skull-based tumors located in the sellar or parasellar areas, and that O-ring rotational 
angles of 15° – 20° or 340° – 345° are limiting. An improved version of the iPlan is now under 
development; it will support a detailed collision map between the X-ray head unit or the O-ring 
and the couch or patient, which will enable safe delivery of noncoplanar DCAs.

In daily practice, we generally do not use caudal arcs when employing C-arm conventional 
linacs because of the risk of collision between the gantry and the patient. However, conventional 
linacs allow caudal arcs to be used to some extent, although the available geometric freedom 
is less than that of the vero4DRT. We used a conventional linac (the Clinac iX; Varian Medical 
Systems, Palo Alto, CA) to experimentally explore how much angle could safely be assumed 
in the context of caudal arcs, In agreement with the literature,(20) the range was maximally 5°. 
Next, we replanned three representative plans within this range of angle (the plans were termed 
Plans C). Compared to Plan A, the homogeneity indices decreased (thus improved) by -0.007, 
-0.0002, and -0.007, although the improvements tended to be smaller than those available 
under Plan B (-0.017, -0.019, and -0.010, respectively). In addition, the numbers of moderate 
doses delivered to normal tissue (the PGIs) also fell (thus improved) by -0.020, -0.226, and 
-0.097 when Plan C was implemented, but the improvements under Plan B were again better 
(-0.206,  -0.361, and -0.397, respectively). Thus, even the small-range (5°) caudal arcs acces-
sible using conventional linacs can improve target homogeneity and decrease doses delivered 
to normal tissues.

 
V. cOncLuSIOnS

DCA techniques from caudal directions using the vero4DRT can improve target homogeneity 
and conformity for skull-base tumors, compared with conventional DCA techniques. Moreover, 
the volume of surrounding normal tissue that receives a moderate dose is also reduced. We 
believe that this is one of the defining characteristics of the vero4DRT. The clinical impact of 
this new technique is a separate question that will be addressed in future studies.
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