1,553 research outputs found

    Angular Power Spectrum of the Microwave Background Anisotropy seen by the COBE Differential Microwave Radiometer

    Get PDF
    The angular power spectrum estimator developed by Peebles (1973) and Hauser & Peebles (1973) has been modified and applied to the 4 year maps produced by the COBE DMR. The power spectrum of the observed sky has been compared to the power spectra of a large number of simulated random skies produced with noise equal to the observed noise and primordial density fluctuation power spectra of power law form, with P(k)knP(k) \propto k^n. The best fitting value of the spectral index in the range of spatial scales corresponding to spherical harmonic indices 3303 \leq \ell \lesssim 30 is an apparent spectral index nappn_{app} = 1.13 (+0.3) (-0.4) which is consistent with the Harrison-Zel'dovich primordial spectral index npri=1n_{pri} = 1 The best fitting amplitude for napp=1n_{app} = 1 is QRMS20.5\langle Q_{RMS}^2\rangle^{0.5} = 18 uK.Comment: 17 pages including 3 PostScript figures. Submitted to The Astrophysical Journal (Letters

    Pseudo-Dipole Signal Removal from WMAP Data

    Full text link
    It is discovered in our previous work that different observational systematics, e.g., errors of antenna pointing directions, asynchronous between the attitude and science data, can generate pseudo-dipole signal in full-sky maps of the cosmic microwave background (CMB) anisotropy published by The Wilkinson Microwave Anisotropy Probe (WMAP) team. Now the antenna sidelobe response to the Doppler signal is found to be able to produce similar effect as well. In this work, independent to the sources, we uniformly model the pseudo-dipole signal and remove it from published WMAP7 CMB maps by model fitting. The result demonstrates that most of the released WMAP CMB quadrupole is artificial.Comment: V3: using WMAP7 dat

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra

    Get PDF
    We present the temperature and polarization angular power spectra of the cosmic microwave background (CMB) derived from the first 5 years of WMAP data. The 5-year temperature (TT) spectrum is cosmic variance limited up to multipole l=530, and individual l-modes have S/N>1 for l<920. The best fitting six-parameter LambdaCDM model has a reduced chi^2 for l=33-1000 of chi^2/nu=1.06, with a probability to exceed of 9.3%. There is now significantly improved data near the third peak which leads to improved cosmological constraints. The temperature-polarization correlation (TE) is seen with high significance. After accounting for foreground emission, the low-l reionization feature in the EE power spectrum is preferred by \Delta\chi^2=19.6 for optical depth tau=0.089 by the EE data alone, and is now largely cosmic variance limited for l=2-6. There is no evidence for cosmic signal in the BB, TB, or EB spectra after accounting for foreground emission. We find that, when averaged over l=2-6, l(l+1)C^{BB}_l/2\pi < 0.15 uK^2 (95% CL).Comment: 29 pages, 13 figures, accepted by ApJ

    Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?

    Get PDF
    (Abridged) A simple six-parameter LCDM model provides a successful fit to WMAP data, both when the data are analyzed alone and in combination with other cosmological data. Even so, it is appropriate to search for any hints of deviations from the now standard model of cosmology, which includes inflation, dark energy, dark matter, baryons, and neutrinos. The cosmological community has subjected the WMAP data to extensive and varied analyses. While there is widespread agreement as to the overall success of the six-parameter LCDM model, various "anomalies" have been reported relative to that model. In this paper we examine potential anomalies and present analyses and assessments of their significance. In most cases we find that claimed anomalies depend on posterior selection of some aspect or subset of the data. Compared with sky simulations based on the best fit model, one can select for low probability features of the WMAP data. Low probability features are expected, but it is not usually straightforward to determine whether any particular low probability feature is the result of the a posteriori selection or of non-standard cosmology. We examine in detail the properties of the power spectrum with respect to the LCDM model. We examine several potential or previously claimed anomalies in the sky maps and power spectra, including cold spots, low quadrupole power, quadropole-octupole alignment, hemispherical or dipole power asymmetry, and quadrupole power asymmetry. We conclude that there is no compelling evidence for deviations from the LCDM model, which is generally an acceptable statistical fit to WMAP and other cosmological data.Comment: 19 pages, 17 figures, also available with higher-res figures on http://lambda.gsfc.nasa.gov; accepted by ApJS; (v2) text as accepte

    Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results

    Full text link
    (Abridged) New full sky temperature and polarization maps based on seven years of data from WMAP are presented. The new results are consistent with previous results, but have improved due to reduced noise from the additional integration time, improved knowledge of the instrument performance, and improved data analysis procedures. The improvements are described in detail. The seven year data set is well fit by a minimal six-parameter flat Lambda-CDM model. The parameters for this model, using the WMAP data in conjunction with baryon acoustic oscillation data from the Sloan Digital Sky Survey and priors on H_0 from Hubble Space Telescope observations, are: Omega_bh^2 = 0.02260 +-0.00053, Omega_ch^2 = 0.1123 +-0.0035, Omega_Lambda = 0.728 +0.015 -0.016, n_s = 0.963 +-0.012, tau = 0.087 +-0.014 and sigma_8 = 0.809 +-0.024 (68 % CL uncertainties). The temperature power spectrum signal-to-noise ratio per multipole is greater that unity for multipoles < 919, allowing a robust measurement of the third acoustic peak. This measurement results in improved constraints on the matter density, Omega_mh^2 = 0.1334 +0.0056 -0.0055, and the epoch of matter- radiation equality, z_eq = 3196 +134 -133, using WMAP data alone. The new WMAP data, when combined with smaller angular scale microwave background anisotropy data, results in a 3 sigma detection of the abundance of primordial Helium, Y_He = 0.326 +-0.075.The power-law index of the primordial power spectrum is now determined to be n_s = 0.963 +-0.012, excluding the Harrison-Zel'dovich-Peebles spectrum by >3 sigma. These new WMAP measurements provide important tests of Big Bang cosmology.Comment: 42 pages, 9 figures, Submitted to Astrophysical Journal Supplement Serie

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Bayesian Estimation of CMB Polarization Maps

    Get PDF
    We describe a sampling method to estimate the polarized CMB signal from observed maps of the sky. We use a Metropolis-within-Gibbs algorithm to estimate the polarized CMB map, containing Q and U Stokes parameters at each pixel, and its covariance matrix. These can be used as inputs for cosmological analyses. The polarized sky signal is parameterized as the sum of three components: CMB, synchrotron emission, and thermal dust emission. The polarized Galactic components are modeled with spatially varying power law spectral indices for the synchrotron, and a fixed power law for the dust, and their component maps are estimated as by-products. We apply the method to simulated low resolution maps with pixels of side 7.2 degrees, using diagonal and full noise realizations drawn from the WMAP noise matrices. The CMB maps are recovered with goodness of fit consistent with errors. Computing the likelihood of the E-mode power in the maps as a function of optical depth to reionization, tau, for fixed temperature anisotropy power, we recover tau=0.091+-0.019 for a simulation with input tau=0.1, and mean tau=0.098 averaged over 10 simulations. A `null' simulation with no polarized CMB signal has maximum likelihood consistent with tau=0. The method is applied to the five-year WMAP data, using the K, Ka, Q and V channels. We find tau=0.090+-0.019, compared to tau=0.086+-0.016 from the template-cleaned maps used in the primary WMAP analysis. The synchrotron spectral index, beta, averaged over high signal-to-noise pixels with standard deviation sigma(beta)<0.25, but excluding ~6% of the sky masked in the Galactic plane, is -3.03+-0.04. This estimate does not vary significantly with Galactic latitude, although includes an informative prior.Comment: 11 pages, 9 figures, matches version accepted by Ap

    The Spectrum of the CMB Anisotropy from the Combined COBE FIRAS and DMR Observations

    Get PDF
    We analyze the Cosmic Microwave Background (CMB) anisotropy data from the independent COBE FIRAS and DMR observations. We extract the frequency spectrum of the FIRAS signal that has the spatial distribution seen by DMR and show that it is consistent with CMB temperature fluctuations in the radiation well into the Wien region of the spectrum. Conversely, we form a map of the Planckian component of the sky temperature from FIRAS and show that it correlates with the DMR anisotropy map. The rms fluctuations at angular scales of 7 degrees are 48 \pm 14 uK for the FIRAS data compared with 35 \pm 2 uK for the DMR data and 31 \pm 6 uK for the correlated combination (1 sigma uncertainties). The consistency of these data, from very different instruments with very different observing strategies, provide compelling support for the interpretation that the signal seen by DMR is, in fact, temperature anisotropy of cosmological origin. The data also limit rms fluctuations in the Compton y parameter, observable via the Sunyaev- Zel'dovich effect, to Delta_y < 3 x 10^{-6} (95% CL) on 7 degree angular scales.Comment: 15 pages, Latex (AASv4 macro) including 3 Postscript figures, to appear in ApJ, vol. 486, Sept 10, 199

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results

    Full text link
    We present new full-sky temperature and polarization maps in five frequency bands from 23 to 94 GHz, based on data from the first five years of the WMAP sky survey. The five-year maps incorporate several improvements in data processing made possible by the additional years of data and by a more complete analysis of the instrument calibration and in-flight beam response. We present several new tests for systematic errors in the polarization data and conclude that Ka band data (33 GHz) is suitable for use in cosmological analysis, after foreground cleaning. This significantly reduces the overall polarization uncertainty. With the 5 year WMAP data, we detect no convincing deviations from the minimal 6-parameter LCDM model: a flat universe dominated by a cosmological constant, with adiabatic and nearly scale-invariant Gaussian fluctuations. Using WMAP data combined with measurements of Type Ia supernovae and Baryon Acoustic Oscillations, we find (68% CL uncertainties): Omega_bh^2 = 0.02267 \pm 0.00059, Omega_ch^2 = 0.1131 \pm 0.0034, Omega_Lambda = 0.726 \pm 0.015, n_s = 0.960 \pm 0.013, tau = 0.084 \pm 0.016, and Delta_R^2 = (2.445 \pm 0.096) x 10^-9. From these we derive: sigma_8 = 0.812 \pm 0.026, H_0 = 70.5 \pm 1.3 km/s/Mpc, z_{reion} = 10.9 \pm 1.4, and t_0 = 13.72 \pm 0.12 Gyr. The new limit on the tensor-to-scalar ratio is r < 0.22 (95% CL). We obtain tight, simultaneous limits on the (constant) dark energy equation of state and spatial curvature: -0.14 < 1+w < 0.12 and -0.0179 < Omega_k < 0.0081 (both 95% CL). The number of relativistic degrees of freedom (e.g. neutrinos) is found to be N_{eff} = 4.4 \pm 1.5, consistent with the standard value of 3.04. Models with N_{eff} = 0 are disfavored at >99.5% confidence.Comment: 46 pages, 13 figures, and 7 tables. Version accepted for publication, ApJS, Feb-2009. Includes 5-year dipole results and additional references. Also available at http://lambda.gsfc.nasa.gov/product/map/dr3/map_bibliography.cf

    Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources

    Full text link
    (Abridged) We present WMAP seven-year observations of bright sources which are often used as calibrators at microwave frequencies. Ten objects are studied in five frequency bands (23 - 94 GHz): the outer planets (Mars, Jupiter, Saturn, Uranus and Neptune) and five fixed celestial sources (Cas A, Tau A, Cyg A, 3C274 and 3C58). The seven-year analysis of Jupiter provides temperatures which are within 1-sigma of the previously published WMAP five-year values, with slightly tighter constraints on variability with orbital phase, and limits (but no detections) on linear polarization. Scaling factors are provided which, when multiplied by the Wright Mars thermal model predictions at 350 micron, reproduce WMAP seasonally averaged observations of Mars within ~2%. An empirical model is described which fits brightness variations of Saturn due to geometrical effects and can be used to predict the WMAP observations to within 3%. Seven-year mean temperatures for Uranus and Neptune are also tabulated. Uncertainties in Uranus temperatures are 3%-4% in the 41, 61 and 94 GHz bands; the smallest uncertainty for Neptune is ~8% for the 94 GHz band. Intriguingly, the spectrum of Uranus appears to show a dip at ~30 GHz of unidentified origin, although the feature is not of high statistical significance. Flux densities for the five selected fixed celestial sources are derived from the seven-year WMAP sky maps, and are tabulated for Stokes I, Q and U, along with polarization fraction and position angle. Fractional uncertainties for the Stokes I fluxes are typically 1% to 3%. Source variability over the seven-year baseline is also estimated. Significant secular decrease is seen for Cas A and Tau A: our results are consistent with a frequency independent decrease of about 0.53% per year for Cas A and 0.22% per year for Tau A.Comment: 72 pages, 21 figures; accepted to ApJS; (v2) corrected Mars model scaling factors, added figure 21, added text to Mars, Saturn and celestial sources section

    Gravitational Lensing Signature of Long Cosmic Strings

    Get PDF
    The gravitational lensing by long, wiggly cosmic strings is shown to produce a large number of lensed images of a background source. In addition to pairs of images on either side of the string, a number of small images outline the string due to small-scale structure on the string. This image pattern could provide a highly distinctive signature of cosmic strings. Since the optical depth for multiple imaging of distant quasar sources by long strings may be comparable to that by galaxies, these image patterns should be clearly observable in the next generation of redshift surveys such as the Sloan Digital Sky Survey.Comment: 4 pages, revtex with 3 postscript figures include
    corecore