1,559 research outputs found
Angular Power Spectrum of the Microwave Background Anisotropy seen by the COBE Differential Microwave Radiometer
The angular power spectrum estimator developed by Peebles (1973) and Hauser &
Peebles (1973) has been modified and applied to the 4 year maps produced by the
COBE DMR. The power spectrum of the observed sky has been compared to the power
spectra of a large number of simulated random skies produced with noise equal
to the observed noise and primordial density fluctuation power spectra of power
law form, with . The best fitting value of the spectral index
in the range of spatial scales corresponding to spherical harmonic indices is an apparent spectral index = 1.13 (+0.3)
(-0.4) which is consistent with the Harrison-Zel'dovich primordial spectral
index The best fitting amplitude for is = 18 uK.Comment: 17 pages including 3 PostScript figures. Submitted to The
Astrophysical Journal (Letters
Pseudo-Dipole Signal Removal from WMAP Data
It is discovered in our previous work that different observational
systematics, e.g., errors of antenna pointing directions, asynchronous between
the attitude and science data, can generate pseudo-dipole signal in full-sky
maps of the cosmic microwave background (CMB) anisotropy published by The
Wilkinson Microwave Anisotropy Probe (WMAP) team. Now the antenna sidelobe
response to the Doppler signal is found to be able to produce similar effect as
well. In this work, independent to the sources, we uniformly model the
pseudo-dipole signal and remove it from published WMAP7 CMB maps by model
fitting. The result demonstrates that most of the released WMAP CMB quadrupole
is artificial.Comment: V3: using WMAP7 dat
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra
We present the temperature and polarization angular power spectra of the
cosmic microwave background (CMB) derived from the first 5 years of WMAP data.
The 5-year temperature (TT) spectrum is cosmic variance limited up to multipole
l=530, and individual l-modes have S/N>1 for l<920. The best fitting
six-parameter LambdaCDM model has a reduced chi^2 for l=33-1000 of
chi^2/nu=1.06, with a probability to exceed of 9.3%. There is now significantly
improved data near the third peak which leads to improved cosmological
constraints. The temperature-polarization correlation (TE) is seen with high
significance. After accounting for foreground emission, the low-l reionization
feature in the EE power spectrum is preferred by \Delta\chi^2=19.6 for optical
depth tau=0.089 by the EE data alone, and is now largely cosmic variance
limited for l=2-6. There is no evidence for cosmic signal in the BB, TB, or EB
spectra after accounting for foreground emission. We find that, when averaged
over l=2-6, l(l+1)C^{BB}_l/2\pi < 0.15 uK^2 (95% CL).Comment: 29 pages, 13 figures, accepted by ApJ
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?
(Abridged) A simple six-parameter LCDM model provides a successful fit to
WMAP data, both when the data are analyzed alone and in combination with other
cosmological data. Even so, it is appropriate to search for any hints of
deviations from the now standard model of cosmology, which includes inflation,
dark energy, dark matter, baryons, and neutrinos. The cosmological community
has subjected the WMAP data to extensive and varied analyses. While there is
widespread agreement as to the overall success of the six-parameter LCDM model,
various "anomalies" have been reported relative to that model. In this paper we
examine potential anomalies and present analyses and assessments of their
significance. In most cases we find that claimed anomalies depend on posterior
selection of some aspect or subset of the data. Compared with sky simulations
based on the best fit model, one can select for low probability features of the
WMAP data. Low probability features are expected, but it is not usually
straightforward to determine whether any particular low probability feature is
the result of the a posteriori selection or of non-standard cosmology. We
examine in detail the properties of the power spectrum with respect to the LCDM
model. We examine several potential or previously claimed anomalies in the sky
maps and power spectra, including cold spots, low quadrupole power,
quadropole-octupole alignment, hemispherical or dipole power asymmetry, and
quadrupole power asymmetry. We conclude that there is no compelling evidence
for deviations from the LCDM model, which is generally an acceptable
statistical fit to WMAP and other cosmological data.Comment: 19 pages, 17 figures, also available with higher-res figures on
http://lambda.gsfc.nasa.gov; accepted by ApJS; (v2) text as accepte
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results
(Abridged) New full sky temperature and polarization maps based on seven
years of data from WMAP are presented. The new results are consistent with
previous results, but have improved due to reduced noise from the additional
integration time, improved knowledge of the instrument performance, and
improved data analysis procedures. The improvements are described in detail.
The seven year data set is well fit by a minimal six-parameter flat Lambda-CDM
model. The parameters for this model, using the WMAP data in conjunction with
baryon acoustic oscillation data from the Sloan Digital Sky Survey and priors
on H_0 from Hubble Space Telescope observations, are: Omega_bh^2 = 0.02260
+-0.00053, Omega_ch^2 = 0.1123 +-0.0035, Omega_Lambda = 0.728 +0.015 -0.016,
n_s = 0.963 +-0.012, tau = 0.087 +-0.014 and sigma_8 = 0.809 +-0.024 (68 % CL
uncertainties). The temperature power spectrum signal-to-noise ratio per
multipole is greater that unity for multipoles < 919, allowing a robust
measurement of the third acoustic peak. This measurement results in improved
constraints on the matter density, Omega_mh^2 = 0.1334 +0.0056 -0.0055, and the
epoch of matter- radiation equality, z_eq = 3196 +134 -133, using WMAP data
alone. The new WMAP data, when combined with smaller angular scale microwave
background anisotropy data, results in a 3 sigma detection of the abundance of
primordial Helium, Y_He = 0.326 +-0.075.The power-law index of the primordial
power spectrum is now determined to be n_s = 0.963 +-0.012, excluding the
Harrison-Zel'dovich-Peebles spectrum by >3 sigma. These new WMAP measurements
provide important tests of Big Bang cosmology.Comment: 42 pages, 9 figures, Submitted to Astrophysical Journal Supplement
Serie
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Bayesian Estimation of CMB Polarization Maps
We describe a sampling method to estimate the polarized CMB signal from
observed maps of the sky. We use a Metropolis-within-Gibbs algorithm to
estimate the polarized CMB map, containing Q and U Stokes parameters at each
pixel, and its covariance matrix. These can be used as inputs for cosmological
analyses. The polarized sky signal is parameterized as the sum of three
components: CMB, synchrotron emission, and thermal dust emission. The polarized
Galactic components are modeled with spatially varying power law spectral
indices for the synchrotron, and a fixed power law for the dust, and their
component maps are estimated as by-products. We apply the method to simulated
low resolution maps with pixels of side 7.2 degrees, using diagonal and full
noise realizations drawn from the WMAP noise matrices. The CMB maps are
recovered with goodness of fit consistent with errors. Computing the likelihood
of the E-mode power in the maps as a function of optical depth to reionization,
tau, for fixed temperature anisotropy power, we recover tau=0.091+-0.019 for a
simulation with input tau=0.1, and mean tau=0.098 averaged over 10 simulations.
A `null' simulation with no polarized CMB signal has maximum likelihood
consistent with tau=0. The method is applied to the five-year WMAP data, using
the K, Ka, Q and V channels. We find tau=0.090+-0.019, compared to
tau=0.086+-0.016 from the template-cleaned maps used in the primary WMAP
analysis. The synchrotron spectral index, beta, averaged over high
signal-to-noise pixels with standard deviation sigma(beta)<0.25, but excluding
~6% of the sky masked in the Galactic plane, is -3.03+-0.04. This estimate does
not vary significantly with Galactic latitude, although includes an informative
prior.Comment: 11 pages, 9 figures, matches version accepted by Ap
The Spectrum of the CMB Anisotropy from the Combined COBE FIRAS and DMR Observations
We analyze the Cosmic Microwave Background (CMB) anisotropy data from the
independent COBE FIRAS and DMR observations. We extract the frequency spectrum
of the FIRAS signal that has the spatial distribution seen by DMR and show that
it is consistent with CMB temperature fluctuations in the radiation well into
the Wien region of the spectrum. Conversely, we form a map of the Planckian
component of the sky temperature from FIRAS and show that it correlates with
the DMR anisotropy map. The rms fluctuations at angular scales of 7 degrees are
48 \pm 14 uK for the FIRAS data compared with 35 \pm 2 uK for the DMR data and
31 \pm 6 uK for the correlated combination (1 sigma uncertainties). The
consistency of these data, from very different instruments with very different
observing strategies, provide compelling support for the interpretation that
the signal seen by DMR is, in fact, temperature anisotropy of cosmological
origin. The data also limit rms fluctuations in the Compton y parameter,
observable via the Sunyaev- Zel'dovich effect, to Delta_y < 3 x 10^{-6} (95%
CL) on 7 degree angular scales.Comment: 15 pages, Latex (AASv4 macro) including 3 Postscript figures, to
appear in ApJ, vol. 486, Sept 10, 199
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results
We present new full-sky temperature and polarization maps in five frequency
bands from 23 to 94 GHz, based on data from the first five years of the WMAP
sky survey. The five-year maps incorporate several improvements in data
processing made possible by the additional years of data and by a more complete
analysis of the instrument calibration and in-flight beam response. We present
several new tests for systematic errors in the polarization data and conclude
that Ka band data (33 GHz) is suitable for use in cosmological analysis, after
foreground cleaning. This significantly reduces the overall polarization
uncertainty. With the 5 year WMAP data, we detect no convincing deviations from
the minimal 6-parameter LCDM model: a flat universe dominated by a cosmological
constant, with adiabatic and nearly scale-invariant Gaussian fluctuations.
Using WMAP data combined with measurements of Type Ia supernovae and Baryon
Acoustic Oscillations, we find (68% CL uncertainties): Omega_bh^2 = 0.02267 \pm
0.00059, Omega_ch^2 = 0.1131 \pm 0.0034, Omega_Lambda = 0.726 \pm 0.015, n_s =
0.960 \pm 0.013, tau = 0.084 \pm 0.016, and Delta_R^2 = (2.445 \pm 0.096) x
10^-9. From these we derive: sigma_8 = 0.812 \pm 0.026, H_0 = 70.5 \pm 1.3
km/s/Mpc, z_{reion} = 10.9 \pm 1.4, and t_0 = 13.72 \pm 0.12 Gyr. The new limit
on the tensor-to-scalar ratio is r < 0.22 (95% CL). We obtain tight,
simultaneous limits on the (constant) dark energy equation of state and spatial
curvature: -0.14 < 1+w < 0.12 and -0.0179 < Omega_k < 0.0081 (both 95% CL). The
number of relativistic degrees of freedom (e.g. neutrinos) is found to be
N_{eff} = 4.4 \pm 1.5, consistent with the standard value of 3.04. Models with
N_{eff} = 0 are disfavored at >99.5% confidence.Comment: 46 pages, 13 figures, and 7 tables. Version accepted for publication,
ApJS, Feb-2009. Includes 5-year dipole results and additional references.
Also available at
http://lambda.gsfc.nasa.gov/product/map/dr3/map_bibliography.cf
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources
(Abridged) We present WMAP seven-year observations of bright sources which
are often used as calibrators at microwave frequencies. Ten objects are studied
in five frequency bands (23 - 94 GHz): the outer planets (Mars, Jupiter,
Saturn, Uranus and Neptune) and five fixed celestial sources (Cas A, Tau A, Cyg
A, 3C274 and 3C58). The seven-year analysis of Jupiter provides temperatures
which are within 1-sigma of the previously published WMAP five-year values,
with slightly tighter constraints on variability with orbital phase, and limits
(but no detections) on linear polarization. Scaling factors are provided which,
when multiplied by the Wright Mars thermal model predictions at 350 micron,
reproduce WMAP seasonally averaged observations of Mars within ~2%. An
empirical model is described which fits brightness variations of Saturn due to
geometrical effects and can be used to predict the WMAP observations to within
3%. Seven-year mean temperatures for Uranus and Neptune are also tabulated.
Uncertainties in Uranus temperatures are 3%-4% in the 41, 61 and 94 GHz bands;
the smallest uncertainty for Neptune is ~8% for the 94 GHz band. Intriguingly,
the spectrum of Uranus appears to show a dip at ~30 GHz of unidentified origin,
although the feature is not of high statistical significance. Flux densities
for the five selected fixed celestial sources are derived from the seven-year
WMAP sky maps, and are tabulated for Stokes I, Q and U, along with polarization
fraction and position angle. Fractional uncertainties for the Stokes I fluxes
are typically 1% to 3%. Source variability over the seven-year baseline is also
estimated. Significant secular decrease is seen for Cas A and Tau A: our
results are consistent with a frequency independent decrease of about 0.53% per
year for Cas A and 0.22% per year for Tau A.Comment: 72 pages, 21 figures; accepted to ApJS; (v2) corrected Mars model
scaling factors, added figure 21, added text to Mars, Saturn and celestial
sources section
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters
(Abridged) We present the angular power spectra derived from the 7-year maps
and discuss the cosmological conclusions that can be inferred from WMAP data
alone. The third acoustic peak in the TT spectrum is now well measured by WMAP.
In the context of a flat LambdaCDM model, this improvement allows us to place
tighter constraints on the matter density from WMAP data alone, and on the
epoch of matter-radiation equality, The temperature-polarization (TE) spectrum
is detected in the 7-year data with a significance of 20 sigma, compared to 13
sigma with the 5-year data. The low-l EE spectrum, a measure of the optical
depth due to reionization, is detected at 5.5 sigma significance when averaged
over l = 2-7. The BB spectrum, an important probe of gravitational waves from
inflation, remains consistent with zero. The upper limit on tensor modes from
polarization data alone is a factor of 2 lower with the 7-year data than it was
using the 5-year data (Komatsu et al. 2010). We test the parameter recovery
process for bias and find that the scalar spectral index, ns, is biased high,
but only by 0.09 sigma, while the remaining parameters are biased by < 0.15
sigma. The improvement in the third peak measurement leads to tighter lower
limits from WMAP on the number of relativistic degrees of freedom (e.g.,
neutrinos) in the early universe: Neff > 2.7 (95% CL). Also, using WMAP data
alone, the primordial helium mass fraction is found to be YHe = 0.28+0.14-0.15,
and with data from higher-resolution CMB experiments included, we now establish
the existence of pre-stellar helium at > 3 sigma (Komatsu et al. 2010).Comment: 22 pages, 14 figures, version accepted to Astrophysical Journal
Supplement Series, added high-l EE detection, consolidated parameter recovery
simulation
- …