96 research outputs found

    The Retinoblastoma Protein in Osteosarcomagenesis

    Get PDF

    pRb-mediated control of epithelial cell proliferation and Indian Hedgehog expression in mouse intestinal development

    Get PDF
    BACKGROUND: Self-renewal of the epithelium of the small intestine is a highly regulated process involving cell proliferation and differentiation of stem cells or progenitor cells located at the bottom of the crypt, ending ultimately with extrusion of the terminally differentiated cells at the tip of villus. RESULTS: Here, we utilized the Cre/loxP system to investigate the function of the retinoblastoma protein, pRb in intestinal epithelium. pRb null mice displayed a profoundly altered development of the intestine with increased proliferation and abnormal expression of differentiation markers. Loss of pRb induces cell hyperproliferation in the proliferative region (crypt) as well as in the differentiated zone (villi). The absence of pRb further results in an increase in the population of enterocytes, goblet, enteroendocrine and Paneth cells. In addition, differentiated enteroendocrine cells failed to exit the cell cycle in the absence of pRb. These proliferative changes were accompanied by increased expression of Indian hedgehog and activation of hedgehog signals, a known pathway for intestinal epithelial cell proliferation. CONCLUSION: Our studies have revealed a unique function of pRb in intestine development which is critical for controlling not only the proliferation of a stem cell or progenitor cell population but that of terminally differentiated cells as well

    Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma

    Get PDF
    The molecular basis for the inverse relationship between differentiation and tumorigenesis is unknown. The function of runx2, a master regulator of osteoblast differentiation belonging to the runt family of tumor suppressor genes, is consistently disrupted in osteosarcoma cell lines. Ectopic expression of runx2 induces p27KIP1, thereby inhibiting the activity of S-phase cyclin complexes and leading to the dephosphorylation of the retinoblastoma tumor suppressor protein (pRb) and a G1 cell cycle arrest. Runx2 physically interacts with the hypophosphorylated form of pRb, a known coactivator of runx2, thereby completing a feed-forward loop in which progressive cell cycle exit promotes increased expression of the osteoblast phenotype. Loss of p27KIP1 perturbs transient and terminal cell cycle exit in osteoblasts. Consistent with the incompatibility of malignant transformation and permanent cell cycle exit, loss of p27KIP1 expression correlates with dedifferentiation in high-grade human osteosarcomas. Physiologic coupling of osteoblast differentiation to cell cycle withdrawal is mediated through runx2 and p27KIP1, and these processes are disrupted in osteosarcoma

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants

    Get PDF
    Psoriasis is a complex disease of skin with a prevalence of about 2%. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for psoriasis to date, including data from eight different Caucasian cohorts, with a combined effective sample size amp;gt;39,000 individuals. We identified 16 additional psoriasis susceptibility loci achieving genome-wide significance, increasing the number of identified loci to 63 for European-origin individuals. Functional analysis highlighted the roles of interferon signalling and the NFkB cascade, and we showed that the psoriasis signals are enriched in regulatory elements from different T cells (CD8(+) T-cells and CD4(+) T-cells including T(H)0, T(H)1 and T(H)17). The identified loci explain similar to 28% of the genetic heritability and generate a discriminatory genetic risk score (AUC = 0.76 in our sample) that is significantly correlated with age at onset (p = 2 x 10(-89)). This study provides a comprehensive layout for the genetic architecture of common variants for psoriasis.Funding Agencies|National Institutes of Health [R01AR042742, R01AR050511, R01AR054966, R01AR063611, R01AR065183]; Foundation for the National Institutes of Health; Dermatology Foundation; National Psoriasis Foundation; Arthritis National Research Foundation; Ann Arbor Veterans Affairs Hospital; Dawn and Dudley Holmes Foundation; Babcock Memorial Trust; Medical Research Council [MR/L011808/1]; German Ministry of Education and Research (BMBF); Doris Duke Foundation [2013106]; National Institute of Health [K08AR060802, R01AR06907]; Taubman Medical Research Institute; Department of Health via the NIHR comprehensive Biomedical Research Center; Kings College London; KCH NHS Foundation Trust; Barbara and Neal Henschel Charitable Foundation; Heinz Nixdorf Foundation; Estonian Ministry of Education and Research [IUT20-46]; Centre of Translational Genomics of University of Tartu (SP1GVARENG); European Regional Development Fund (Centre of Translational Medicine, University of Tartu); German Federal Ministry of Education and Research (BMBF); National Human Genome Research Institute of the National Institutes of Health [R44HG006981]; International Psoriasis Council</p

    A Role for the Retinoblastoma Protein As a Regulator of Mouse Osteoblast Cell Adhesion: Implications for Osteogenesis and Osteosarcoma Formation

    Get PDF
    The retinoblastoma protein (pRb) is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis

    Contrasting Transcriptional Responses of a Virulent and an Attenuated Strain of Mycobacterium tuberculosis Infecting Macrophages

    Get PDF
    Along with the recent identification of single nucleotide polymorphisms in H37Ra when compared to H37Rv, our demonstration of differential expression of PhoP-regulated and ESX-1 region-related genes during macrophage infection further highlights the significance of these genes in the attenuation of H37Ra

    Gene-based analysis of regulatory variants identifies 4 putative novel asthma risk genes related to nucleotide synthesis and signaling

    Get PDF
    Background Hundreds of genetic variants are thought to contribute to variation in asthma risk by modulating gene expression. Methods that increase the power of genome-wide association studies (GWASs) to identify risk-associated variants are needed. Objective We sought to develop a method that aggregates the evidence for association with disease risk across expression quantitative trait loci (eQTLs) of a gene and use this approach to identify asthma risk genes. Methods We developed a gene-based test and software package called EUGENE that (1) is applicable to GWAS summary statistics; (2) considers both cis- and trans-eQTLs; (3) incorporates eQTLs identified in different tissues; and (4) uses simulations to account for multiple testing. We applied this approach to 2 published asthma GWASs (combined n\ua0=\ua046,044) and used mouse studies to provide initial functional insights into 2 genes with novel genetic associations. Results We tested the association between asthma and 17,190 genes that were found to have cis- and/or trans-eQTLs across 16 published eQTL studies. At an empirical FDR of 5%, 48 genes were associated with asthma risk. Of these, for 37, the association was driven by eQTLs located in established risk loci for allergic disease, including 6 genes not previously implicated in disease cause (eg, LIMS1, TINF2, and SAFB). The remaining 11 significant genes represent potential novel genetic associations with asthma. The association with 4 of these replicated in an independent GWAS: B4GALT3, USMG5, P2RY13, and P2RY14, which are genes involved in nucleotide synthesis or nucleotide-dependent cell activation. In mouse studies, P2ry13 and P2ry14β€”purinergic receptors activated by adenosine 5-diphosphate and UDP-sugars, respectivelyβ€”were upregulated after allergen challenge, notably in airway epithelial cells, eosinophils, and neutrophils. Intranasal exposure with receptor agonists induced the release of IL-33 and subsequent eosinophil infiltration into the lungs. Conclusion We identified novel associations between asthma and eQTLs for 4 genes related to nucleotide synthesis/signaling and demonstrated the power of gene-based analyses of GWASs

    Differential Impact of Tetratricopeptide Repeat Proteins on the Steroid Hormone Receptors

    Get PDF
    Tetratricopeptide repeat (TPR) motif containing co-chaperones of the chaperone Hsp90 are considered control modules that govern activity and specificity of this central folding platform. Steroid receptors are paradigm clients of Hsp90. The influence of some TPR proteins on selected receptors has been described, but a comprehensive analysis of the effects of TPR proteins on all steroid receptors has not been accomplished yet.We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system. To be able to assess each cofactor's effect on the transcriptional activity of on each steroid receptor we employed transient transfection in a reporter gene assay. In addition, we evaluated the interactions of the TPR proteins with the receptors and components of the Hsp90 chaperone heterocomplex by coimmunoprecipitation. In the functional assays, corticosteroid and progesterone receptors displayed the most sensitive and distinct reaction to the TPR proteins. Androgen receptor's activity was moderately impaired by most cofactors, whereas the Estrogen receptors' activity was impaired by most cofactors only to a minor degree. Second, interaction studies revealed that the strongly receptor-interacting co-chaperones were all among the inhibitory proteins. Intriguingly, the TPR-proteins also differentially co-precipitated the heterochaperone complex components Hsp90, Hsp70, and p23, pointing to differences in their modes of action.The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones. The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity
    • …
    corecore