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SUMMARY

Neutrophils are essential for immune defense and
can respond to infection by releasing chromatin in
the form of neutrophil extracellular traps (NETs).
Here we show that NETs are induced by mitogens
and accompanied by induction of cell-cycle markers,
including phosphorylation of the retinoblastoma
protein and lamins, nuclear envelope breakdown,
and duplication of centrosomes. We identify cyclin-
dependent kinases 4 and 6 (CDK4/6) as essential reg-
ulators of NETs and show that the response is
inhibited by the cell-cycle inhibitor p21Cip. CDK6, in
neutrophils, is required for clearance of the fungal
pathogen Candida albicans. Our data describe a
function for CDK4/6 in immunity.

INTRODUCTION

Neutrophils are the most abundant immune cells in the blood-

stream. They are essential for survival; in humans a lack of neu-

trophils results in severe immunodeficiency and a drastically

reduced lifespan, as for example in individuals with mutations

causing congenital neutropenias (Klein, 2011). Neutrophils are

produced in the bone marrow from dividing progenitors. After

maturing and exiting the cell cycle they move to the circulatory

system where they are thought to have a short lifespan. Upon

infection or injury they migrate into affected tissues where they

directly kill pathogens, as well as shaping the ensuing adaptive

immune response (Amulic et al., 2012; Mantovani et al., 2011).

Neutrophils kill microbes by phagocytosis, production of reac-

tive oxygen species (ROS), and by release of various microbici-

dal proteins. Before activation, these antimicrobials are kept in

intracellular storage vesicles called granules. When the cell

senses pathogens, the antimicrobials can be released by a

process called degranulation, whereby the granules fuse with

the plasma membrane and release their contents. An additional
Developmen
antimicrobial strategy has been described, which entraps path-

ogens in neutrophil extracellular traps (NETs) (Brinkmann et al.,

2004). These consist of extruded chromatin bound to various

antimicrobials from the granules. By associating with NETs, the

antimicrobial molecules are physically limited from diffusing

away from their site of action, which may enhance their killing

capacity, as well as limit collateral damage to host tissues.

NETs are triggered by large pathogens, such as hyphal forms

ofCandida albicans (Branzk et al., 2014). Furthermore, excessive

NET release is associated with a growing list of inflammatory and

autoimmune diseases, including systemic lupus erythematosus

(SLE) (Kaplan and Radic, 2012), atherosclerosis (Warnatsch

et al., 2015), diabetes (Wong et al., 2015), vasculitis (Kaplan

and Radic, 2012), thrombosis (Martinod and Wagner, 2014),

sepsis (Camicia et al., 2014), and cancer (Park et al., 2016). Un-

derstanding the molecular mechanism of NET formation is thus

crucial for developing therapeutics in the context of immune de-

fense and inflammatory diseases.

NETosis is a type of neutrophil cell death, distinct from

apoptosis or necrosis, which remains poorly characterized. It is

an active process characterized by internal breakdown of nu-

clear and granular membranes, the mixing of the contents of

these compartments in the cytosol and finally, their extracellular

release via plasma membrane rupture (Fuchs et al., 2007).

Although alternative pathways have been reported (Park et al.,

2016; Parker et al., 2012; Kenny et al., 2017), the most studied

NETosis program is the one in response to C. albicans and the

mitogen phorbol myristate acetate (PMA). It requires signaling

through mitogen-activated protein kinases (MAPKs) (Hakkim

et al., 2011) and the production of ROS by the enzyme NADPH

oxidase (NOX2) (Fuchs et al., 2007). ROS are required for the

permeabilization of granules by a protein complex called the

azurosome, which allows translocation of a protease, neutrophil

elastase, into the nucleus where it cleaves histones and leads to

chromatin decondensation (Papayannopoulos et al., 2010; Met-

zler et al., 2014). Other mechanistic aspects remain unknown,

although some forms of NET formation are associatedwith citrul-

lination of histones, catalyzed by the enzyme protein arginine

deiminase 4 (PAD4) (Li et al., 2010; Kenny et al., 2017).
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One of the most distinctive features of NETosis is the break-

down of the nuclear envelope. This characteristic sets it apart

from apoptosis, and is highly reminiscent of nuclear envelope

disintegration during mitosis in dividing cells. This observation

led us to postulate that NET induction is linked to mitogenic

reactivation of cell-cycle regulators. We show that neutrophils,

which are terminally differentiated cells, upregulate Ki-67, phos-

phorylate retinoblastoma protein (pRb), and nuclear lamins, and

separate centrosomes without replicating DNA or undergoing

cytokinesis. We demonstrate that core members of the cell-cy-

cle machinery, cyclin-dependent kinases 4 and 6 (CDK4/6), are

required for NET formation. Taken together, the data presented

here show that, in neutrophils, cell-cycle pathways are repur-

posed for controlling NETosis.

RESULTS

Mitogens Induce NETs
Fungi and the protein kinase C agonist PMA activate a similar

pathway to make NETs. Both induce MAPK signaling (Hakkim

et al., 2011), the activation of NOX2, and the production of

ROS (Fuchs et al., 2007). PMA is also a strong mitogen, a

chemical with the ability to trigger cell division. We tested if

other mitogens also lead to NET release. Concanavalin

A (ConA) and phytohaemagglutinin, two plant lectins commonly

used to induce proliferation of lymphocytes, both induced

NETs, distinguishable by their morphology and the colocaliza-

tion of nuclear and granular markers (Figures 1A and 1B).

Importantly, NET induction with mitogens was also dependent

on ROS production, since neutrophils isolated from chronic

granulomatous disease (CGD) patients, who have deficiencies

in NOX2, or those treated with diphenyleneiodonium, a

NOX2 chemical inhibitor, did not undergo NETosis (Figures

1A and 1B).

NETosis Is Accompanied by Induction of Cell Division
Markers
Neutrophils are terminally differentiated cells that have with-

drawn from the cell cycle and lost their capacity to divide.

Indeed, mature neutrophils downregulate most of the genes

involved in cell-cycle regulation (Klausen et al., 2004), a finding

we confirmed by genome-wide expression analysis of peripheral

blood neutrophils from healthy donors (Table S1). Despite this,

mitogenic stimulation of neutrophils leads to nuclear envelope

breakdown as it does in the case of mitosis in dividing cells.

Transmission electron microscopy comparing mitosis in the

myeloid cell line PLB-985, and NETosis in neutrophils, revealed

that the vesiculation of the nuclear envelope is common to

both processes (Figure 1C; Fuchs et al., 2007). We were struck

by this similarity and postulated that common cellular pathways

are employed during NETosis and mitosis.

We first examined cell-cycle markers in neutrophils induced to

make NETs. The nuclear antigen Ki-67 is expressed in all cycling

cells, irrespective of the stage of the cell cycle they are in, while it

is absent in non-cycling, quiescent, or senescent cells. Resting

neutrophils were negative for Ki-67 but, surprisingly, cells stimu-

lated to undergo NETosis transiently reactivated expression of

this cell division marker, visualized by immunofluorescence (Fig-

ures 2A and 2B).
450 Developmental Cell 43, 449–462, November 20, 2017
We examined a series of other cell-cycle markers, in the order

in which they are induced in dividing cells. Neutrophils are typi-

cally considered to be in the G0 stage, like other terminally differ-

entiated and quiescent cells (Figure S1). Cells in G0 can resume

cycling after mitogenic stimulation; this is associated with phos-

phorylation of pRb by CDK4/6 (Malumbres and Barbacid, 2009).

Notably, neutrophils stimulated to make NETs also exhibited

robust phosphorylation of pRb, indicating that activation of G1

kinases was occurring (Figure 2C). Importantly, pRb phosphory-

lation was not only triggered by PMA and ConA, but also by

infection with C. albicans hyphae (Figure 2C). Stimuli that acti-

vate neutrophils but do not induce NETs, such as bacterial pep-

tide analog N-formylmethionyl-leucyl-phenylalanine (fMLP), did

not lead to pRb phosphorylation.

Despite activation of G1 kinases, we did not detect incorpora-

tion of the thymidine analog 5-ethynyl-20-deoxyuridine (EdU)

(Figure 2D), indicating that DNA synthesis, the hallmark of S

phase, did not occur. As a control for EdU incorporation we

used continuously cycling HEK293 cells (Figure 2D) as well as

T lymphocytes, which can be induced to proliferate by treatment

with PMA, analogously to our stimulation of neutrophils. T cells

stimulated with PMA/ionomycin successfully incorporated

EdU, but this required a longer period of stimulation than the

3 hr it took neutrophils to make NETs (Figure S1B), highlighting

an important difference in the temporal dynamic between

NETosis and cell-cycle re-entry. Similarly, we observed no in-

duction of the S-phase transcriptional program in neutrophils

making NETs. In cycling cells, phosphorylation of pRb leads to

the derepression of E2F transcription factors and expression of

S-phase genes, but these were not induced in NETosis as

measured by qPCR analysis (Figure S1C) and whole-genome

microarray analysis (data not shown).

Our initial observation of nuclear envelope breakdown during

NETosis (Figure 1C) argued that mitotic pathways are also acti-

vated. Inmitosis (Mphase), nuclear envelopedisintegration is trig-

geredbyphosphorylationof lamins, intermediate filamentproteins

that form a sheet underneath the envelope called the nuclear

lamina (Heald and McKeon, 1990). Phosphorylation of the lamina

disrupts the structural rigidity of the nucleus, allowing the nuclear

envelope to disintegrate. We tested if NET formation is also asso-

ciatedwithphosphorylationof lamins.Remarkably, treatmentwith

the NET-inducing stimuli PMA, ConA, orC. albicans hyphae all led

to robust phosphorylation of lamin A/C (Figure 2C). This was

confirmed by immunofluorescence (Figures S1D and S1E).

Furthermore,NETosiswas accompaniedby induction of a second

mitotic marker: phosphorylation of histone H3 at serine 10

(H3S10). Neither lamin nor H3S10 phosphorylation were induced

by the control stimulus fMLP (Figure 2C), which, as mentioned

above, does not induce NETs.

Induction of NETs Leads to Centrosome Separation
To test whether NET formation involves induction of other mitotic

markers, we visualized microtubule dynamics by immuno-

fluorescence microscopy. During mitosis, microtubule-based

structures called centrosomes, which were duplicated in the

preceding S phase, separate and migrate to opposing poles

of the cell where they nucleate formation of the mitotic

spindle (Mardin and Schiebel, 2012). In unstimulated neutrophils,

immunostaining with an antibody directed against both a- and
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Figure 1. Mitogens Induce NETs

(A) Human peripheral blood neutrophils isolated from a healthy donor or CGD patient (n = 2) with a genetic deficiency in NOX2, stimulated with PMA (50 nM) or

ConA (50 mg/mL) for 5 hr. Both stimuli lead to colocalization of chromatin (red), DNA (blue), and the granule protein neutrophil elastase (green). Representative

image from three independent experiments. Nonstim, nonstimulated. Top row, merge; bottom row, DNA. Scale bars, 5 mm.

(B) Quantification of NET induction with mitogens and C. albicans, and inhibition with the NOX2 inhibitor diphenyliodonium (DPI, 5 mM). Representative result of

three independent repeats, means ± SD.

(C) Electron micrograph comparing nuclear envelope breakdown in mitosis and NETosis. Left: PLB-985 cells were synchronized in G2 and then released into

mitosis. In G2 the nuclear envelope is intact but disintegrates in the prophase of mitosis, concurrently with appearance of condensed chromosomes (darker

staining territories in the nucleus). In anaphase, chromosomes have separated and, eventually the nuclear envelope begins to reform. Right: nonstimulated

neutrophils have a lobulated nucleus, but this lobulation is lost as they prepare to release NETs. Approximately 2 hr after PMA stimulation, the nuclear envelope

starts to disintegrate, allowing nuclear material to mix with the contents of the granules and the cytoplasm before being released into the extracellular space. The

bottom row shows magnified details from corresponding top panels. Arrows indicate vesiculation of the nuclear envelope. Neutrophil images are representative

from at least five different embeddings. Scale bars, 5 mm (upper panels; overview) and 1 mm (lower panels; detailed views).

Developmental Cell 43, 449–462, November 20, 2017 451



A

Lam A/C

P-Lam A/C

pRb

P-pRb

P-H3S10

  -       30      60      90      120        fMLP  ConA  C.alb

B

     no EdU                    EdU 1h  nonstim + EdU  1h PMA + EdU 3h PMA + EdU

      NeutrophilsHEK cells

DNA

EDU

merge

C D

PMA (min)

E

      nonstim           30 min             60 min              90 min             120 min            240 min        

PMA stimulation

α/β tubulin

F

DNA  γ tubulin

nonstim     1h PMA 

75

100

100

75

15

0 30 60 90 12
0

15
0

18
0

21
0

24
0

0

20

40

60

80

100

time (minutes)

%
ce

lls

Ki67 positive
NETs

G

no
ns

tim

60
min

PMA
0

20

40

60

80

100

%
se

pa
ra

te
d

γ
tu

bu
lin

pu
nc

ta
eDNA

nonstim

    PMA (1h)

DAPI Elastase Ki67 merge

(legend on next page)

452 Developmental Cell 43, 449–462, November 20, 2017



b-tubulin demonstrated a ‘‘skeletal’’ or scaffold-like staining

pattern with several filaments extending from a central microtu-

bule-organizing center (Figures 2E and S1F). After 30min of PMA

stimulation these extended filaments were lost and rearranged

into single or double dot-like structures. Strikingly, 60 min

post-stimulation, these dot-like structures had duplicated and

migrated away from each other. The structures were most fully

separated from each other at 90 min post-stimulation and were

no longer present by 120 min, which coincided with breakdown

of the nuclear envelope. Immunofluorescence detection of the

centrosome marker g-tubulin confirmed that these structures

were bona fide centrosomes (Figures 2F and 2G). Treatment

with the control stimulus fMLP did not induce microtubule rear-

rangement (Figure S1G). Centrosome separation, together with

phosphorylation of lamins and histone H3S10, demonstrate

that markers of a mitotic program are present just before neutro-

phils die and release NETs.

Neutrophils Activate Cell-Cycle Signaling In Vivo

Induction of cell-cycle markers in neutrophils was surprising

since they are terminally differentiated cells. To verify that this

also occurs in vivo, we induced NETs by inoculating mice with

C. albicans via the orotracheal route. We then co-stained lung

sections with antibodies against neutrophil markers (calgranulin

A or Ly6G) and the cell division marker Ki-67. Interestingly, we

identified many Ki-67-positive neutrophils in the infected lungs

(Figures 3A and S2A).

We also examined human histological sections from patients

with brain fungal abscesses, identified by periodic acid-Schiff

staining (Figure S2B). We observed NETs in these sections by

detecting neutrophil elastase co-localizing with DNA (Fig-

ure S2C). Next, we co-stained sections with Ki-67 and the

neutrophil marker calgranulin, and indeed were able to observe

Ki-67-positive neutrophil infiltrates (Figure 3B). We confirmed

this finding using immunohistochemical methods with a second

Ki-67 antibody (Figure S2D), as well as immunofluorescent-

based detection of a second neutrophil marker (CD66b; Fig-

ure S2E). Neutrophils were only Ki-67 positive when they had

intact nuclei (NET precursors), as was the case with Ki-67 detec-

tion in purified neutrophils (Figure 2B). Remarkably, we could

also detect duplicated centrosomes in these cells (Figure 3C),

demonstrating the induction of mitotic pathways in neutrophils

in vivo and confirming our results with isolated human cells.
Figure 2. NET Formation Is Associated with Induction of Cell-Cycle M

(A) Nonstimulated (nonstim, top panel) and PMA-treated human neutrophils staine

experiments. Scale bars, 5 mm.

(B) Quantification of nuclear Ki-67 staining during PMA time course stimulation. Th

SYTOX-positive cells (black). The graph shows means ± SEM from combined da

(C) Western blot of G1/S and M phase markers in lysates prepared from human

control stimulus that does not induce NETs (fMLP). ‘‘P-’’ indicates phosphoryl

Molecular weights are indicated in kDa.

(D) Immunofluorescence analysis of EdU incorporation in control HEK cells (left)

nucleotide analog EdU for 1 hr before PMA stimulation and were then fixed at in

control for 1 hr before fixing.

(E) Immunofluorescence detection of microtubules with an antibody against a- an

with PMA.

(F) Nonstimulated and PMA-treated (1 hr) human neutrophils stained for g-tubu

independent experiments, with cells from different donors. Scale bars 5 mm.

(G) Quantification of separated centrosomes from (F). Graph shows means ± SE
TheCell-Cycle Inhibitor p21cip RegulatesNETFormation
Human neutrophils are refractory to transfection and gene edit-

ing because of their short lifespans. As an initial approach to

determine whether NETosis is dependent on the cell cycle, we

used cell-penetrating peptides. In dividing cells, one class of

negative cell-cycle regulators is a family of small proteins termed

cip/kip (CDK interacting protein/Kinase inhibitory protein). The

prototype of this family is p21cip1 (p21), a protein that blocks

the cell cycle at several different points (Figure S1A) by inhibiting

cyclin-CDK complexes. We synthesized a peptide mimic corre-

sponding to the CDK inhibitory domain of p21 (Rousseau et al.,

1999), which was previously shown to inhibit proliferation by

interfering with the activity of CDKs. We coupled this peptide

to the cell-penetrating tat sequence (Goulvestre et al., 2005).

A scrambled peptide served as the control. Both peptides

penetrated neutrophils with similar efficiencies (Figure S3A),

and neither were toxic to the cells (Figure S3B). Transduction

of the p21 inhibitory peptide (p21inh) into human neutrophils

completely blocked NET formation, while transduction of the

control scrambled peptide (p21ctrl) had little effect (Figures 4A

and 4B). Interference with CDKs thus leads to inhibition of NET

release, indicating that these cell-cycle regulators are necessary

for NETosis. We also examined NET formation in p21 knockout

mice, whose cells have higher proliferative capacities due to

increased CDK activity and loss of cell-cycle control (Bedel-

baeva et al., 2010). As expected, peritoneal neutrophils from

p21 knockout mice made more NETs than wild-type (WT) cells

(Figure 4C), consistent with p21 being a regulator of both cell-cy-

cle and NET formation. ROS production, however, was similar in

both strains (Figure 4D).

Neutrophils Express CDK4/6
The early stages of NET formation display various cell-cycle

markers and can be blocked by the CDK binding domain of

the p21 cell-cycle inhibitor. CDKs and their regulatory subunits,

the cyclins, are the major drivers of the mammalian cell cycle

(Figure S1A). The CDKs are a large group of kinases, many of

which have functions unrelated to the cell cycle (Lim and Kaldis,

2013). Of the canonical cell-cycle regulatory kinases, the close

homologs CDKs 4 and 6 regulate the transition from G0 to G1

phase and are considered to be largely redundant (Malumbres

and Barbacid, 2009). CDK2 drives progression through S phase,

while CDK1 is essential for mitosis, although much functional
arkers

d for Ki-67 (red) and elastase (green). Representative image from four different

e percentage of Ki67-positive cells (gray) is plotted alongwith the percentage of

ta of four healthy donors.

neutrophils simulated with NET inducers (PMA, ConA, and C. albicans) and a

ation. Representative blot from three or more repeats with different donors.

and human neutrophils making NETs (right). Neutrophils were incubated with

dicated times. HEK cells (nonstimulated) were incubated with EdU or vehicle

d b-tubulin (red), in a time course experiment of human neutrophils stimulated
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M from combined data of four donors. See also Figure S1.
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Figure 3. Neutrophils Activate Cell-Cycle Signaling In Vivo

(A and B) Immunostaining of mouse lung infected with C. albicans (A) or human brain fungal abscess (B) showing neutrophils labeled with calgranulin (red)

expressing Ki-67 (green) in the nucleus. Representative image from six mice or four different human specimens.

(C) Neutrophils (red/calgranulin) in human brain fungal abscess, showing duplicated and separated centrosomes (green). (A–C) Blue, DNA. Scale bars, 10 mm. See

also Figure S2.
overlap has been reported (Figure S1A; Malumbres and Barba-

cid, 2009). We examined protein expression of the cell-cycle

CDKs in human neutrophils and were able to detect CDK4/6

(Figure 5A). CDK4 was present at the protein level, as well as

induced at the transcriptional level, after NET induction (Fig-

ure S4A), while CDK6 was only present at the protein level (Fig-

ure 5A). Neutrophils did not express CDK2 or CDK1 (Figures 5A
454 Developmental Cell 43, 449–462, November 20, 2017
and S4A), in agreement with previous reports (Leitch et al., 2012;

Klausen et al., 2004).

CDK4/6 are implicated in phosphorylation of pRb (Meyerson

and Harlow, 1994) and in centrosome separation (Hussain

et al., 2013) both of which occur during NET formation (Figures

2C and 2F). Furthermore, CDK4/6 activity can be induced via

MAPK signaling and is a central link between extracellular
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Figure 4. p21 Regulates NETs

(A) Human neutrophils were incubated with a peptide corresponding to the CDK inhibitory domain of the p21 protein (p21inh), or a scrambled control peptide

(p21ctrl), at a concentration of 20 mM before activation of NETs with PMA. The graph shows means ± SEM of NET formation after 4 hr. n = 3 donors. **p < 0.01,

unpaired Student’s t test.

(B) Representative immunofluorescence images of PMA-stimulated cells pre-incubated with p21 peptide or scrambled control, from three independent repeats.

DNA is shown in blue and chromatin in red. Scale bars, 10 mm.

(C) NET formation in WT and p21�/� mouse peritoneal neutrophils after 5 hr of PMA stimulation. Bars show means ± SEM, n = 4 mice. ***p < 0.001, unpaired

Student’s t test.

(D) Oxidative burst in WT and p21�/�mouse peritoneal neutrophils in response to PMA. Bars showmeans of maximum luminescence intensity, ± SEM. n = 4; ns,

non-significant, unpaired Student’s t test. See also Figure S3.
growth signals and induction of proliferation (Malumbres and

Barbacid, 2009). CDK6 localizes throughout the cytoplasm in

unstimulated neutrophils and transiently accumulates in the

nucleus of PMA-stimulated cells (Figure 5B). We could not deter-

mine the localization of CDK4. Neutrophils express the CDK4/6

regulatory co-factor cyclin D2 and low levels of cyclin D3

(Figure 5C).

CDK4/6 Controls NET Formation
To test if these G1 kinases are involved in NET formation, we

incubated human neutrophils with a CDK4/6 pharmacological in-

hibitor (abemaciclib/LY2835219), which efficiently blocked NETs

in a dose-dependent manner (Figures 5D, S4D, and S4E), but did
not inhibit the oxidative burst (Figure 5F), phagocytosis (Fig-

ure 5G), or degranulation (Figure S4F). This was confirmed with

a secondCdk4/6 inhibitor (palbociclib, Figure 5E). Both inhibitors

blocked ConA-induced NETs at lower concentrations than those

required for PMA, consistent with ConA being aweaker stimulus.

CDK4/6 inhibition blocked translocation of elastase to the nu-

cleus (Figure S4G), a requirement for NET release (Papayanno-

poulos et al., 2010).

CDK4/6 double knockout mice die at late stages of embryonic

development due to severe anemia (Malumbres et al., 2004). The

kinases have, however, been knocked out individually. Cdk6

knockout mice are viable and have only mild hematopoietic dis-

turbances (Malumbres et al., 2004; Hu et al., 2009). We used a
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Cdk6�/�mouse strain in which expression of the gene was inter-

rupted by insertion of a floxed transcriptional stop cassette in the

first exon (Hu et al., 2009). We purified neutrophils from the

peritoneum of Cdk6�/� and WT mice (Figure S5A) and obtained

similar yields and purities (Figure S5B). Like human neutrophils,

mouse neutrophils expressedCdk4 aswell as Cdk6 (Figure S5A).

Despite this redundancy, Cdk6-deficient neutrophils were

impaired in NET production in response to both PMA and

C. albicans hyphae (Figures 5H and S5C). We obtained similar

results with bone marrow-purified neutrophils (Figure S5D).

The oxidative burst was unaffected in the knockout animals

(Figure 5I), similar to the result with the CDK4/6 inhibitor. There

was no difference in peritoneal neutrophil maturity between the

two genotypes, as revealed by expression level of the surface

marker Ly6G (Figure S5E) and nuclear morphology (Figure S5F).

Likewise, we observed no difference in cytokine production

(Figure 5J), indicating that Cdk6 deficiency specifically affects

NET production, rather than generally modulating inflammatory

pathways.

Cdk6 Is Required for Antifungal Defense In Vivo

To test the effect of Cdk6 and NET deficiency in infections, we

used the murine C. albicans sepsis model, which closely reflects

the human disease (Spellberg et al., 2005). In this model,

C. albicans colonizes the kidneys leading to renal failure (Spell-

berg et al., 2005). The host anti-Candida response is mediated

primarily by neutrophils (Fulurija et al., 1996), making this a

good model for investigating the effect of Cdk6 and NET defi-

ciency on immunity. Mice were intravenously injected with live

C. albicans and monitored over the course of the infection.

Cdk6�/� animals lost weight more rapidly than WT animals (Fig-

ure 6A) and also succumbed to the diseasemore rapidly thanWT

animals (Figure 6B). Nox2-deficient animals, which are similarly

impaired in NET production, also showed reduced survival in

response to C. albicans challenge (Figure 6B).

We next infectedmice with a sublethal dose ofC. albicans and

compared fungal loads in the kidneys 5 days post-infection. We

found a strikingly elevated C. albicans fungal load in knockout

animals (Figure 6C). This effect was not due to differences in

peripheral blood counts of neutrophils (Figure S6A) or other

immune cells (Figure S5C). Cdk6 was previously implicated in

regulating cytokine production (Handschick et al., 2014), but
Figure 5. Cdk4/6 Control NET Formation

For a Figure360 author presentation of Figure 5, see https://doi.org/10.1016/j.de

(A) Expression of CDKs in human neutrophils (neutro) and control T cells by wes

(B) Left: image showing subcellular localization of CDK6 in naive and PMA-stimul

5 mm. Right: Quantification of enrichment of CDK6 in neutrophil nuclei, n = 3 don

(C) Expression of cyclin D in human neutrophils (neutro) and control PLB-985

independent experiments with different donors.

(D and E) NET inhibition with the Cdk4/6 inhibitor abemaciclib (LY2835219) (D) and

data from four donors. Graph shows means and SEM.

(F) Oxidative burst in human neutrophils treated with Cdk4/6 inhibitor or vehicle.

(G) Phagocytosis of C. albicans by human neutrophils pretreated with vehicle (D

(H) NET formation in WT and Cdk6�/� mouse peritoneal neutrophils after 5 hr

****p < 0.0001, ***p < 0.001.

(I) Oxidative burst measured by luminol assay in WT or Cdk6�/� mouse periton

significant.

(J) Mip1a production in WT and Cdk6�/� mouse neutrophils (n = 3 per group),

Student’s t test. See also Figures S4 and S5.
we found equivalent, or even elevated numbers of neutrophils

infiltrating the kidneys of Cdk6�/� animals on day 5 post-infec-

tion (Figure S6B), indicating that migratory capacity was unaf-

fected. The higher rates of neutrophil accumulation in knockout

mice was likely a reflection of higher fungal burdens in these an-

imals. Furthermore, bone marrow-derived macrophages from

WT and Cdk6 null mice produced pro- and anti-inflammatory

mediators at similar rates (Figure S6D).

Consistent with previous descriptions of sublethal C. albicans

infections (Fisher et al., 2011), histological analysis of infected

kidneys demonstrated that, 5 days post-infection, the fungus

produced hyphal filaments, which are associated with tissue

destruction, and that these hyphae were collecting in excretory

lesions in the papillae of the renal pelvis (Figure 6D). Immunoflu-

orescence analysis revealed that hyphal masses were more

abundant in knockout animals: 90% of Cdk6�/� mice had

detectable hyphae in the renal papillae, compared with 25% of

WT mice.

Cdk6 is broadly expressed in hematopoietic and some

non-hematopoietic mouse tissues (Tigan et al., 2015), so its

contribution to proper immune defenses could derive from

non-myeloid cell activity. To investigate if Cdk6 is required in

neutrophils, we restored expression of the kinase in knockout

animals by breeding Cdk6�/� mice with animals expressing

Cre recombinase (Cre) under the control of a lysozyme M pro-

moter (LysM-Cre). This driver leads to expression of Cre in cells

of the myeloid lineage, including neutrophils, monocytes, and

macrophages. Expression of Cre in neutrophils led to excision

of the floxed STOP cassette and restored Cdk6 to similar levels

as in WT mice (Figure S6C). Importantly, genetic rescue of Cdk6

in myeloid cells of knockout mice restored the ability of these

mice to mount proper immune responses against C. albicans

(Figure 6C), demonstrating a role for Cdk6 in antimicrobial

defense.

DISCUSSION

Neutrophils are terminally differentiated cells that have stopped

proliferating. Indeed, an analysis of cell-cycle proteins demon-

strated a downregulation of cyclins and CDKs as neutrophils

differentiate from hematopoietic precursors into mature cells

(Klausen et al., 2004). Here we show that, despite this
vcel.2017.10.013#mmc3.

tern blot analysis. Molecular weights indicated in kDa.

ated human neutrophils. DNA is shown in blue and CDK6 in green. Scale bars,

ors, bars show means and SEM. **p < 0.01, unpaired Student’s t test.

cells (PLB) by western blot. (A–C) Representative blots or image from three

palbociclib (PD-0332991) after 4 hr of PMA or ConA stimulation (E). Combined

Representative data from three independent repeats. Bars = mean and SD.

MSO, black), abemaciclib (red), and cytochalasin D (blue), n = 3 donors.

of stimulation with PMA or heat-killed C. albicans hyphae. n = 4 per group.

eal neutrophils stimulated with 100 nM PMA. n = 4 mice per group. ns, not

in response to LPS (200 ng/mL). (F–J) Graph shows means ± SEM, unpaired
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downregulation, neutrophils can re-activate some aspects of

cell-cycle signaling, most notably CDK4/6, upon mitogenic

stimulation. We show that NETosis is accompanied by upregula-

tion of Ki-67, phosphorylation of pRb, lamin A/C, and histone

H3S10, as well as duplication of centrosomes and nuclear enve-

lope breakdown. Neutrophil activation does not result in DNA

synthesis, condensation of chromosomes or cytokinesis, indi-

cating that cell-cycle re-entry is not occurring.

In dividing cells, the cell cycle is tightly controlled and rapidly

aborted in response to abnormalities, stress, or disruption of

the sequential order of events. Activation of these checkpoints

often results in cell death (Malumbres and Barbacid, 2009). It is

interesting to speculate that NETotic cell death also results

from triggering of one of these checkpoints. For instance, at-

tempted DNA replication without concomitant production of

histones arrests the cell cycle in G2 (Gunesdogan et al.,

2014). Furthermore, NET formation also requires production

of ROS (Fuchs et al., 2007), which can damage DNA and acti-

vate the DNA damage checkpoint in both dividing cells (Ma-

lumbres and Barbacid, 2009) and in neutrophils (Harbort

et al., 2015). At this point, it is unclear if CDK4/6 promote

NETs via cell-cycle signaling or completely unrelated path-

ways; therefore the involvement of checkpoints also remains

speculative.

ROS can also be mitogenic by activating growth factor recep-

tors (Verbon et al., 2012), but, in NETosis, NOX2-derived ROS do

not appear to be upstream of cell-cycle signaling, as phosphor-

ylation of pRb and lamin A/C proceeds unchanged in neutrophils

fromCGDpatients. CDK4/6 thus function in a parallel pathway to

ROS production; these kinases are necessary but not sufficient

for NET formation.

NET formation was inhibited by transduction of a peptide

mimic derived from the CDK binding domain of p21, providing

an indication that a CDK is involved in the process. p21 is an

endogenous cell-cycle inhibitor that blocks CDK activity, just

like the peptide mimic employed here. Cells from p21 null mice

have higher proliferative capacities (Balomenos et al., 2000)

and neutrophils from these mice also exhibited elevated rates

of NET formation. p21 knockout mice have been reported to

have stronger inflammatory reactions (Martin et al., 2016) and,

interestingly, p21 knockout mice also spontaneously develop

SLE (Balomenos et al., 2000), a chronic autoimmune disease

that has been associated with excessive NET release (Kaplan

and Radic, 2012) and accumulation of antibodies against DNA

and histones.

Mitogenic signaling in quiescent cells can lead to cell-cycle

restart by activating CDK4/6 (Tigan et al., 2015). Consistent

with this idea, we show that CDK4/6 are activated upon mito-

genic stimulation of neutrophils, and that these kinases regulate

NET formation. Our observation that CDK4/6 are the only cell-cy-

cle CDKs expressed in human neutrophils potentially explains

the unusual mix of cell-cycle markers induced during NET forma-

tion, since these kinases are active in both phosphorylating pRb
(C) C. albicans CFU expressed per gram of kidney tissue in WT, Cdk6�/�, and co

CFU. Lines indicate median. **p < 0.01; *p < 0.05 Mann-Whitney U test. ns, not

(D) C. albicans (red) and neutrophils (Ly6G, green) in papillae of renal pelvis (v

Representative image of nine analyzed kidneys per genotype. Scale bar, 200 mm
in G1 phase, and inducing centrosome separation in M phase

(Hussain et al., 2013). It remains unclear, however, if CDK4/6

control NETs via cell-cycle substrates or via targets that are

unrelated to cell-cycle control. pRb phosphorylation and centro-

some separation could thus simply be markers of CDK4/6

activation, rather than being integral to the mechanism of NET

release.

CDK6 is predominantly expressed in blood cells where it

plays a role in T cell development and lymphomagenesis

(Hu et al., 2009, 2011). It regulates cell-cycle re-entry in certain

subsets of hematopoietic precursors (Laurenti et al., 2015;

Scheicher et al., 2015), but, despite this, levels of peripheral

blood leukocytes, including neutrophils, are normal in Cdk6

knockout mice (Figure S5), probably due to compensation

from Cdk4. Alternative roles for Cdk6 as a transcriptional regu-

lator have also been uncovered (Handschick et al., 2014). It is

unlikely that Cdk6 regulates NETs via transcriptional regulation,

since NET formation is independent of de novo gene expres-

sion (Sollberger et al., 2016). Furthermore, the fact that

ROS and cytokine production, as well as surface marker

expression, are unperturbed in Cdk6�/� neutrophils, argues

against a defect in differentiation or a general deficiency in in-

flammatory signaling.

We identify a role for Cdk6 in innate immune defense. Mice

lacking this kinase are highly susceptible to infection with the

fungal pathogen C. albicans. In acute systemic candidiasis, the

immune response is predominantly mediated by neutrophils

and not by T cell responses, since mice lacking T cells do not

show any increase in susceptibility to disease (Cutler, 1976).

CDK6 was shown to regulate cytokine production in HeLa cells

(Handschick et al., 2014), but we failed to detect a defect in

neutrophil recruitment to infected organs. Macrophages, the

major producers of cytokines during infections, produced

normal levels of these inflammatory mediators despite lacking

CDK6. Elevated kidney fungal loads are thus likely a reflection

of a defect in neutrophil function, specifically one in NET forma-

tion, although the use of the LysM-Cre driver in the rescue exper-

iment means we cannot rule out other impairments in myeloid

cells. Cdk6 was shown to regulate macrophage adhesion in

response to lipopolysaccharide LPS, and knockout mice are

protected against LPS-induced sepsis (Hennessy et al., 2011).

This finding is in line with a role for Cdk6 in NET formation, since

NETs are also implicated in the pathology of sepsis (Camicia

et al., 2014).

NETs are important for immune defense, but are also dysre-

gulated in many autoimmune diseases. Intriguingly, a genetic

polymorphism in CDK6 has been associated with rheumatoid

arthritis (Raychaudhuri et al., 2008). CDK6 expression levels

are also elevated in various types of cancer, and inhibition of

this kinase appears to be a promising new antitumor therapy

(Tigan et al., 2015). It is of note that malignancies such as chronic

myelogenous leukemia are associated with high levels of NET-

induced thrombosis (Demers et al., 2012). The contribution of
nditional rescue Cdk6�/�; LysM-Cre+ mice, 5 days post-infection with 13 105

significant.

isualized by DNA stain/blue) of WT and Cdk6�/� mice, day 5 post-infection.

. See also Figure S6.

Developmental Cell 43, 449–462, November 20, 2017 459



CDK6 to cancer may thus be 2-fold: cell-cycle dysregulation

contributing to tumorigenesis as well as increased NET forma-

tion by myeloid cell precursors leading to thrombosis, the sec-

ond most common cause of death in cancer patients (Rickles

et al., 1992). Use of CDK4/6 inhibitors in cancer therapy may

consequently lower rates of thrombosis, but also dampen im-

mune responses in patients.

Interestingly, other instances exist where cell-cycle signaling

in postmitotic cells has been linked to disease (Herrup and

Yang, 2007). In the brain, neurons can inappropriately re-activate

the cell cycle, which leads to cell death just as it does in neutro-

phils. Cell death resulting from neuron cell-cycle re-entry has

been linked to several neurodegenerative diseases, including

Alzheimer’s disease and amyotrophic lateral sclerosis (Busser

et al., 1998; Herrup and Yang, 2007). Dysregulation of cell-cycle

proteins in postmitotic neurons and neutrophils can thus be

viewed as a unifying disease principle in neurodegenerative

and inflammatory disorders.

In summary, NET formation, an antimicrobial form of cell

death, is controlled by the activation of the cell-cycle kinases

CDK4/6. During infection, lymphocytes activate the cell cycle

to rapidly increase their numbers and thus fulfill their memory

or cytotoxic functions.We show that, in neutrophils, similar path-

ways are used for regulating the NETotic cell death program,

with essential consequences for immunopathology and defense

against pathogens. These findings open up avenues for thera-

peutic interventions in NET-related diseases.
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Sigma N/A

b2-microglobulin R

5’-TTTGGAGTACGCTGGATAGCCT-3’

Sigma N/A

Software and Algorithms

ImageJ imagej.net N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact, Arturo Zychlinsky

(zychlinsky@mpiib-berlin.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Samples
Our study was conducted in accordance with the Helsinki Declaration. Blood donations from healthy donors (male and female, ages

23-53) and CGD patient (male, age 23) were collected after obtaining informed consent. Information on sample size can be found in

the figure legends. Histopathological samples were collected anonymously from diagnostic biopsies and autopsies, therefore sex

and age reporting is not possible. Both blood and pathology sample collection was approved by the ethical committee of Charité

University Hospital, Berlin, Germany.

Mice
Mouse breeding and experiments were approved by the Berlin state authority Landesamt f€ur Gesundheit und Soziales. Animals were

bred locally at the Max Planck Institute for Infection Biology. They were housed in approved specific pathogen free (SPF) conditions,

maintained on a 12-hour light/dark cycle and fed ad libitum. Cdk6�/� mice (B6.129S4-Cdk6tm1/J) were generated by a knock-in

approach (Hu et al., 2009) and obtained from the Hinds laboratory. They were bred homozygous. p21�/�mice, generated in the Leder

lab (B6.129S6(Cg)-Cdkn1atm1Led/J) were obtained from Jackson laboratory and were bred homozygous. For conditional rescue of

Cdk6 in myeloid cells, cdk6�/� mice were crossed with LysM- Cre mice (B6.129P2-Lyz2tm1(cre)Ifo/J), obtained from Jackson labora-

tory. Experiments were carried out with male and female sex- and age-matched 8-12 week old mice that were confirmed to be

infection free and had not been exposed to any previous procedures. For estimation of group size we used the software nQuery.

Experimenters were not blinded to animal genotype. For group sizes and statistical tests please see figure legends.

Mouse Infections
C. albicans strain SC5314 was grown as an overnight culture in YPDmedium at 30�Cwith shaking. For lung infections, 106 cfu in PBS

were delivered via the oral-tracheal route into 8 week old female wild-type C57B6 mice (n=6). Mice were sacrificed and lungs were

removed 18 hours later and fixed in 2% PFA.

For disseminated candidiasis, two different doses were used: for survival experiments, animals were injected intravenously (i.v.)

with 5x105 cfu and monitored daily. For kidney fungal load, renal histology and immune cell infiltration assays, 8 week old female

mice were injected i.v. with 1x105 cfu. After 5 days, animals were sacrificed and kidneys were removed. One kidney was homoge-

nized in a Precellys Evolution bead homogenizer (Bertin technologies) for plating and cfu determination and the other was processed

for FACS analysis. For group sizes and statistical tests please see figure legends.

Cell Line
PLB-985 cells (female; RRID:CVCL_2162) were kindly donated by Dr. Mary Dinauer. They were cultured according to standard

protocols in RPMI medium with 10% FCS, glutamine and antibiotics. Cells were used exclusively for controls or as a reference.

They were not checked for contamination with mycoplasma or with other cell lines. Synchronization in G2 phase was achieved by

incubating cells in presence of 10 mM RO3306 for 14 hours, followed by washing and reseeding in normal medium.
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METHOD DETAILS

Purification of Human Peripheral Blood Neutrophils
Venous blood was collected into EDTA tubes (S-Monovette, Sarstedt), layered on Histopaque 1119 (Sigma-Aldrich) and centrifuged

for 20min at 8003 g. The plasma and upper layers consistingmainly of lymphocytes andmonocytes were discarded (or collected for

T cell purification). The neutrophil-rich layer was collected, leaving the red blood cells on the bottom of the tube. Neutrophils were

washed in PBS, and further fractionated on a discontinuous Percoll (Pharmacia) gradient consisting of layers with densities of

1105 g/ml (85%), 1100 g/ml (80%), 1093 g/ml (75%), 1087 g/ml (70%), and 1081 g/ml (65%). After centrifugation for 20 min at

800 3 g, the interface between the 80% and 85% Percoll layers was collected and washed with PBS. Neutrophil purity was deter-

mined to be > 95% by FACS.

NET Induction and Quantification
Human NETs were induced in culture medium consisting of RPMI supplemented with HEPES (10 mM) and 0.05% human serum

albumin (HSA, Grifols), with 50 nM PMA (Sigma), 50 mg/ml ConA (Sigma), 50 mg/ml PHA (Sigma) or liveC. albicans (previously opson-

ized in human serum) at a multiplicity of infection (MOI) of 5. Cells were stimulated with mitogens for 4 hours and with C. albicans for

2 hours.

NETs were enumerated using a SYTO/SYTOX staining technique. The cell impermeable SYTOX orange dye (1 mM, Thermofisher)

was used to detect NETs. SYTO green, a cell-permeable DNA dye (250 nM, Thermofisher), was used to determine the total number of

cells. Imageswere taken on a Leica DM IRBE invertedmicroscope. Percentage of NET release was calculated by dividing the number

of SYTOX positive cells by the number of SYTO positive cells. For studies with chemical inhibitors, cells were plated directly into cul-

ture medium containing the inhibitors. Preincubation with Abemaciclib (LY2835219, Selleck) and Palbociclib (Selleck) was for 30 min

at the indicated concentrations. Stock solutions of inhibitors were made by dissolving in DMSO and stored for one week at room

temperature after which they were discarded.

Immunofluorescence
Neutrophils were fixed on uncoated glass coverslips with 2% paraformaldehyde (PFA), permeabilized for 5 minutes with 0.5%

Triton X-100, and then blocked at room temperature for 30 minutes in 1% bovine serum albumin, 5% normal donkey serum,

and 3% cold-water fish gelatin (Sigma-Aldrich). To promote attachment of unstimulated cells, neutrophils were first plated for

5minutes in RPMIwithout human serum albumin, after which culturemediumwas added (RPMI with 0.05%HSA). Primary antibodies

used were: anti-Ki67 (Abcam SP6), anti-a/b Tubulin (Cell Signaling Technology [CST]), anti-pericentrin (Abcam), anti- Lamin A/C

phospho-ser392 (Biorbyt), anti-Cdk6 (Santa Cruz, C-21), anti-elastase (EMD), anti-g tubulin (Thermo) and anti-chromatin (reacts

with a complex of Histone 2A, Histone 2B and DNA, (Losman et al., 1992)). Samples were stained with primary antibodies for 1h

at 37�C in blocking buffer, followed by secondary antibodies conjugated to Alexa Fluor 488 or 568 (Invitrogen) together with Hoechst

33342. Coverslips were mounted in Mowiol and images were taken with a Leica SP8 confocal microscope.

Transmission Electron Microscopy
Cells were fixed with 2.5% glutaraldehyde, postfixed with 1% osmiumtetroxide, contrasted with uranylacetate and tannic acid, de-

hydrated and embedded in Polybed (Polysciences). Specimens were then cut at 60 nm and contrasted with lead citrate. Analysis was

carried out on a Leo 906E transmission electron microscope (Oberkochen).

Western Blotting
Protein immunoblotting was performed as previously described (Harbort et al., 2015), with lysates prepared directly in hot SDS

loading dye. Primary antibodies used were as follows: anti-CDK6 (Santa Cruz, c-21 [for detecting human protein]), anti-Cdk6

(Abcam ab54576, [for detecting mouse protein]), anti-CDK4 (Abcam EPR4513 [for detecting human protein]), anti-Cdk4

(Genetex GTX102993 [for detecting mouse protein]), anti-CCND1, CCND2, CCND3 (Santa Cruz), anti-CCNE1 (CST HE12),

anti-CCNE2 (Abnova 10197), anti-CCNA2 (CST BF683), anti-CCNB1 (CST 4138), anti-CDK1 (Abcam, clone A17), anti-CDK2

(CST 78B2), anti-CDK7 (Thermo Fisher PA5-34791), anti-phospho-Lamin A/C (S22 [CST]), anti-Lamin A/C (CST), anti-phospho

histone H3 (S10 [CST]), anti-Histone H3 (CST), anti-phospho pRb (S780 [CST D59B7]), anti-pRb (CST) anti-Ki67 (Abcam SP6) and

anti-GAPDH (CST).

Microarray Analysis
RNA from 8 healthy donors was isolated using RNeasy mini kit (Qiagen) and labeled with the Fluorescent Linear Amplification Kit

(Agilent Technologies) according to manufacturer’s instructions before hybridization to whole-genome 4344k human expression

arrays (Agilent). Data analysis was performed using the limma R package. Expression values were background-corrected followed

by quantile normalization between samples.
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Quantitative Real-Time PCR
RNA was isolated with RNeasy mini kit (Qiagen). cDNA was made using High-capacity RNA-to-cDNA kit (Applied Biosystems)

according to manufacturer’s protocol. qPCR was performed on StepOnePlus Real-Time PCR System with 2x Fast SYBR Green

master mix (Applied Biosystems). The housekeeping gene

b2-microglobulin (F 5’-CTCCGTGGCCTTAGCTGTG-3’ and

R 5’-TTTGGAGTACGCTGGATAGCCT-3’) was used as an internal control for relative standard curves. All other cDNAs were

amplified with Quantitect primer (Qiagen). Data were analyzed using StepOne software.

Peptide Inhibition Experiments
Tat conjugated peptides were synthesized by Peptide 2.0 Inc (Chantilly, VA, USA). p21inh, corresponding to amino acids 46–65 of

the p21 protein: Ac-YGRKKRRQRRRRERWNFDFVTETPLEGDFAW-NH2; p21ctrl: Ac-YGRKKRRQRRRLWARDENDEVFRWFT

PEFGT-NH2. Neutrophils were incubated with 20 mM of peptides for 1 hour in Hank’s Balanced Salt Solution (HBSS) without

magnesium or calcium ions, with orbital rotation. Subsequently, the cells were diluted 1:20 in culture medium, plated and stimulated

with PMA.

EdU Incorporation Assay
DNA synthesis wasmonitored using the Click-iT EdU Alexa Fluor 488 Imaging Kit (Thermo Fisher) as per manufacturer’s instructions.

Neutrophils, T cells or HEK cells were incubated with EdU for 20min before stimulation (in the case of neutrophils and T cells). Control

human T cells were purified from peripheral blood mononuclear cell (PBMC) fractions. After separation on Histopaque 1119 (Sigma-

Aldrich), PBMCs were stimulated with PHA, incubated for 5 days and then restimulated with 20 ng/ml PMA and 200 ng/ml ionomycin

to induce proliferation in the presence of EdU.

Mouse NETs
Mouse peritoneal neutrophils were elicited with casein (Sigma) and purified on a Percoll gradient as previously published (Swamydas

et al., 2015). Mouse bone marrow neutrophils were purified as previously described (Sollberger et al., 2016). Cells were stimulated in

RPMI supplemented with 1% DNase�/� mouse serum and 100 ng/ml G-CSF (Peprotech) with either PMA (100 nM) or heat killed

C. albicans hyphae (Sollberger et al., 2016) for the indicated times.

Histology
Human biopsy and autopsy tissue was fixed in formalin and embedded in paraffin. Four micrometer thick paraffin sections were

stained using routine Periodic acid–Schiff (PAS) staining or with antibodies against Ki-67 (MiB1, Dako) by using the iView-Ventana

diaminobenzidine (DAB) Detection Kit (Ventana) with biotinylated secondary antibodies and DAB visualization of the peroxidase

reaction product with a Benchmark XT immunostainer (Ventana).

Mouse lungs and kidneys were fixed in 2% PFA, embedded in paraffin and cut to 5 mm sections.

Immunofluorescence experiments were carried out with anti-Ki67 (Abcam SP6), anti-pericentrin (Abcam), anti-Calgranulin

A (S100A8) (produced in-house) and anti- C. albicans (Acris BP1006) primary antibodies, followed by Alexa secondary antibodies

(Invitrogen).

Microscopy was performed with a Leica SP8 confocal microscope.

Mouse Peripheral Blood Counts
Cell populations in whole blood were identified and quantified by flow cytometry with the following antibodies: anti- CD115

(AF598, eBioscience), anti-Gr-1 (RB6-8C5, Biolegend), anti-CD3 (17A2, BD Bioscience), anti-CD4 (RM4-5, BD Bioscience), CD8a

(53-6.7, BD Bioscience), anti-B220 (RA3-6B2, Biolegend). Antibodies were added directly to 100 mL of heparinized whole blood at

a 1:200 dilution and incubated at room temperature for 30 minutes. Stained cells were fixed and erythrocytes were lysed simulta-

neously with 1-step Fix/Lyse solution (Affymetrix eBioscience). AccuCheck Counting beads (Invitrogen) were added to obtain total

cell counts. Samples were acquired on a BD LSRFortessa using DIVA software and analyzed by Flowjo (Treestar) software.

ROS Assay
Neutrophils were seeded in 96-well plates at a concentration of 1x105 cells per well in 200 ml medium supplemented with 50 mM

luminol and 1.2 units/ml horseradish peroxidase, both from Sigma. After 30 minute incubation at 37�C, cells were stimulated with

100 nM PMA and luminescence was measured over time in a VICTOR Light luminescence counter (Perkin Elmer) and expressed

as Relative Light Units (RLU).

Phagocytosis Assay
Green fluorescent protein (GFP)-expressing C. albicans strain sc5314 (kind gift of Brendan Cormack) was opsonized with 10%

human serum for 20 minutes and incubated with purified human neutrophils. For inhibitor experiments, neutrophils were pretreated

with compounds for 30 minutes. Phagocytocis was allowed to proceed for 30 minutes at 37�C with rotation in RPMI supplemented

with 0.1% human serum albumin, after which cells were fixed with 2% PFA. Neutrophils were labelled with an anti-CD15 antibody

coupled with allophycocyanin (APC). Percentage phagocytosis was determined by FACS analysis of GFP and APC positive cells.
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Degranulation Assay
Human neutrophils were stimulated with opsonized zymosan (10 mg/ml) or medium for 2 hours to stimulate degranulation of elastase.

Zymosan (Sigma) was opsonized with 10% pooled human serum from 6 donors for 30 minutes at 37�C. Elastase release in super-

natants was quantified using the human elastase ELISA kit (Hycult).

Purification of Kidney Immune Infiltrate
Neutrophils in infected kidneys were analyzed as outlined in (Swamydas et al., 2015). Briefly, kidneys were finely sliced with a scalpel

and digested for 30min in the presence of 0.2125mg/ml Liberase TL (Roche) and 0.1mg/ml DNase I (Roche). After digestion, kidneys

were strained through a 70 mm sieve, red cells were lysed with ACK lysis buffer (Lonza) and the pellet was resuspended in 40%

Percoll. This was loaded over 70% Percoll and centrifuged at 872x g for 30 min. Cells were collected from the interface and analyzed

by FACS.

QUANTIFICATION AND STATISTICAL ANALYSIS

GraphPad Prismwas used to generate graphs and perform all statistical tests. For NET assays, immunofluorescence quantifications,

ROS production, phagocytosis and cytokine secretion, graphs show means +/- standard error of the mean and unpaired t test was

used for statistical comparisons. Mann-Whitney U test was used for comparing cfu enumeration and neutrophil counts. Survival data

were analyzed by the Kaplan-Meier method with Mantel-Cox log-rank testing. Details of statistical analyses for quantifications are in

corresponding figure legends, including significance levels, exact n values and what n represents for each experiment.

DATA AND SOFTWARE AVAILABILITY

The values for microarray expression analysis have been deposited in GEO repository as GEO: GSE103755.
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