52 research outputs found

    Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals.

    Get PDF
    Previous reports have indicated a small, positive relationship between physical activity and cognition. However, the majority of research has focused on older adults, with few studies examining this relationship during earlier periods of the life span. This study examined the relationship of physical activity to cognition in a cross-section of 241 community-dwelling individuals 15-71 years of age with a task requiring variable amounts of executive control. Data were analyzed with multiple regression, which controlled for age, sex, and IQ. Participants reported their physical activity behavior and were tested for reaction time (RT) and response accuracy on congruent and incongruent conditions of a flanker task, which manipulates interference control. After controlling for confounding variables, an age-related slowing of RT was observed during both congruent and incongruent flanker conditions. However, physical activity was associated with faster RT during these conditions, regardless of age. Response accuracy findings indicated that increased physical activity was associated with better performance only during the incongruent condition for the older cohort. Findings suggest that physical activity may be beneficial to both general and selective aspects of cognition, particularly among older adults. © 2006 APA, all rights reserved

    Effects of an exercise program on brain health outcomes for children with overweight or obesity

    Get PDF
    Importance Pediatric overweight and obesity are highly prevalent across the world, with implications for poorer cognitive and brain health. Exercise might potentially attenuate these adverse consequences. Objectives To investigate the effects of an exercise program on brain health indicators, including intelligence, executive function, academic performance, and brain outcomes, among children with overweight or obesity and to explore potential mediators and moderators of the main effects of exercise. Design, Setting, and Participants All preexercise and postexercise data for this 20-week randomized clinical trial of 109 children aged 8 to 11 years with overweight or obesity were collected from November 21, 2014, to June 30, 2016, with neuroimaging data processing and analyses conducted between June 1, 2017, and December 20, 2021. All 109 children were included in the intention-to-treat analyses; 90 children (82.6%) completed the postexercise evaluation and attended 70% or more of the recommended exercise sessions and were included in per-protocol analyses. Interventions All participants received lifestyle recommendations. The control group continued their usual routines, whereas the exercise group attended a minimum of 3 supervised 90-minute sessions per week in an out-of-school setting. Main Outcomes and Measures Intelligence, executive function (cognitive flexibility, inhibition, and working memory), and academic performance were assessed with standardized tests, and hippocampal volume was measured with magnetic resonance imaging. Results The 109 participants included 45 girls (41.3%); participants had a mean (SD) body mass index of 26.8 (3.6) and a mean (SD) age of 10.0 (1.1) years at baseline. In per-protocol analyses, the exercise intervention improved crystallized intelligence, with the exercise group improving from before exercise to after exercise (mean z score, 0.62 [95% CI, 0.44-0.80]) compared with the control group (mean z score, –0.10 [95% CI, –0.28 to 0.09]; difference between groups, 0.72 SDs [95% CI, 0.46-0.97]; P < .001). Total intelligence also improved significantly more in the exercise group (mean z score, 0.69 [95% CI, 0.48-0.89]) than in the control group (mean z score, 0.07 [95% CI, –0.14 to 0.28]; difference between groups, 0.62 SDs [95% CI, 0.31-0.91]; P < .001). Exercise also positively affected a composite score of cognitive flexibility (mean z score: exercise group, 0.25 [95% CI, 0.05-0.44]; control group, –0.17 [95% CI, –0.39 to 0.04]; difference between groups, 0.42 SDs [95% CI, 0.13-0.71]; P = .005). These main effects were consistent in intention-to-treat analyses and after multiple-testing correction. There was a positive, small-magnitude effect of exercise on total academic performance (mean z score: exercise group, 0.31 [95% CI, 0.18-0.44]; control group, 0.10 [95% CI, –0.04 to 0.24]; difference between groups, 0.21 SDs [95% CI, 0.01-0.40]; P = .03), which was partially mediated by cognitive flexibility. Inhibition, working memory, hippocampal volume, and other brain magnetic resonance imaging outcomes studied were not affected by the exercise program. The intervention increased cardiorespiratory fitness performance as indicated by longer treadmill time to exhaustion (mean z score: exercise group, 0.54 [95% CI, 0.27-0.82]; control group, 0.13 [95% CI, –0.16 to 0.41]; difference between groups, 0.42 SDs [95% CI, 0.01-0.82]; P = .04), and these changes in fitness mediated some of the effects (small percentage of mediation [approximately 10%-20%]). The effects of exercise were overall consistent across the moderators tested, except for larger improvements in intelligence among boys compared with girls. Conclusions and Relevance In this randomized clinical trial, exercise positively affected intelligence and cognitive flexibility during development among children with overweight or obesity. However, the structural and functional brain changes responsible for these improvements were not identified

    Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1

    Get PDF
    Peer reviewe

    A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm.

    No full text
    Younger and older physically active and sedentary adults participated in a task switching paradigm in which they performed a task repeatedly or switched between two different tasks, while measures of response speed, response accuracy, P3 amplitude, and P3 latency were recorded. Overall, response times were faster and midline P3 amplitudes were larger for the active than for the sedentary participants. P3 latencies discriminated between active and sedentary individuals on trials in which multiple task sets were maintained in memory and task switches occurred unpredictably but not in blocks of trials in which a single task was repeatedly performed. Results are discussed in terms of the specificity and generality of physical activity effects on cognition. © 2005 Elsevier B.V. All rights reserved

    Cognitive and anatomical data in a healthy cohort of adults

    Get PDF
    We present data from a sample of 190 healthy adults including assessments of 4 cognitive factor scores, 12 cognitive tests, and 115 MRI-assessed neuroanatomical variables (cortical thicknesses, cortical and sub-cortical volumes, fractional anisotropy, and radial diffusivity). These data were used in estimating underlying sources of individual variation via independent component analysis (Watson et al., In press) [25]. Keywords: Independent component analysis, Fluid intelligence, Neuroanatomy, Tractography, Individual difference
    corecore