84 research outputs found

    Burgerville: Sustainability and Sourcing in a QSR Supply Chain

    Get PDF
    Jack Graves is considering buying chicken. More precisely, Jack is considering where to buy chicken. He needs to make a recommendation to the purchasing team soon, and the decision is complicated. Jack is a long-time employee of the Burgerville restaurant chain, a quick-serve restaurant chain in the Northwest USA. Burgerville prides itself in being true to its long-held values while maintaining profitability and growth. Graves’ primary job at Burgerville is to assure that the company’s values are embedded in all its actions, including its relationships to its supply chain. His current concern is the dilemma of which values to promote. Burgerville sells chicken, lots of chicken. So the purchase of chicken has significant impacts on the social and environmental impacts of Burgerville’s supply chain. Should Burgerville buy local, with the inherent social and environmental benefits, while paying attention to concerns about labor issues, animal treatment, and non-organic stewardship? Or should it find a supplier with some assurance that these potential problems are eliminated, regardless of location? Jack knows that Burgerville needs to address this issue soon, as the supply of chicken that is produced to Burgerville’s high standards is small and there are sure to be competitors seeking the same products. He will have to weigh the company’s values and make a recommendation soon. As the Chief Cultural Officer of The Holland Inc., Burgerville’s parent company, Jack Graves is constantly aware of the need to align the Burgerville culture and identity throughout all units of the business, including vendor partners. The chain’s slogan: Fresh. Local. Sustainable. proclaims its commitment to offering foods differently than other quick serve chains, with specific attention to where food is being sourced. Burgerville aims to deliver on this promise as often as possible, and has had success in the past. Over the past decade, Burgerville has made a concerted effort to ensure its purchasing supports it values. As of 2009, over 70% of Burgerville’s total spending on food products was from local suppliers, up from less than 60% in 2008. With chicken, though, Graves was faced with some difficult questions and hard choices: can Burgerville find a local supplier who can provide a sufficient quantity and quality of breaded and plain chicken breasts and chicken strips at a cost comparable to the existing national brand supplier? Is buying local the most important decision to make for Burgerville and its image? Is the issue more than simply reducing the distance the food travels from origin to the customer? Are Burgerville customers willing to pay a premium for locally sourced chicken? It makes sense to purchase from local farmers who may then become loyal customers, but what if distant farms operate more sustainably than the local farms? Is there a sustainable chicken farm that could handle Burgerville’s demand? These questions weigh on Graves’s mind as he struggles to balance the chain’s profitability with the company’s values

    A Flow Cytometric Assay for the Study of E3 Ubiquitin Ligase Activityb

    Get PDF
    This is the peer reviewed version of the following article: Hilliard, J. G., Cooper, A. L., Slusser, J. G. and Davido, D. J. (2009), A flow cytometric assay for the study of E3 ubiquitin ligase activity. Cytometry, 75A: 634–641. doi:10.1002/cyto.a.20738, which has been published in final form at http://doi.org/10.1002/cyto.a.20738. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.BACKGROUND: Current methods for monitoring E3 ubiquitin ligase activity in cell culture or in vivo are limited. As a result, the degradation of cellular targets by many E3 ubiquitin ligases in live cells has not yet been examined. METHODS: A target of an E3 ubiquitin ligase was expressed as a fluorescently labeled protein in cell culture. If the E3 ubiquitin ligase mediates the degradation of a target protein in cell culture, it is expected that the target will show a reduced fluorescence signal by FCM analysis. We initially used the E3 ubiquitin ligase, herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0) and one of its targets, promyelocytic leukemia (PML) protein, to determine the feasibility of our approach. Cells expressing a PML-GFP fusion protein were selected by cell sorting and infected with an adenoviral vector expressing ICP0. RESULTS: In contrast to mock-infected cells, only PML-GFP-expressing cells infected with the ICP0 adenoviral vector led to a significant decrease in the fluorescence signal of PML-GFP when examined by fluorescence microscopy and FCM analysis. CONCLUSIONS: Using HSV-1 ICP0 as a paradigm, it is possible to examine the live activity of an E3 ubiquitin ligase (via one of its targets) in cell culture with FCM analysis

    Lightweight Formal Methods for Improving Software Security

    Get PDF
    This research examines how software specifications could be used to build more-secure software. For this project, we analyzed known vulnerabilities for open source projects to identify the corrective actions required to patch the vulnerability. For each vulnerability, we then augmented the program with formal assertions in an attempt to allow a static analysis tool to find the vulnerability. Using the information gathered from these assertions, we hope to determine which assertions are most effective at finding vulnerabilities with today\u27s tools and evaluate new assertions that could be added to the static analysis tool to help uncover more vulnerabilities. My work focuses on a common vulnerability type across multiple projects. In particular, I am examining if vulnerabilities caused by missing authentication could be prevented with proper tool usage

    Management of essential tremor deep brain stimulation-induced side effects

    Get PDF
    Deep brain stimulation (DBS) is an effective surgical therapy for carefully selected patients with medication refractory essential tremor (ET). The most popular anatomical targets for ET DBS are the ventral intermedius nucleus (VIM) of the thalamus, the caudal zona incerta (cZI) and the posterior subthalamic area (PSA). Despite extensive knowledge in DBS programming for tremor suppression, it is not uncommon to experience stimulation induced side effects related to DBS therapy. Dysarthria, dysphagia, ataxia, and gait impairment are common stimulation induced side effects from modulation of brain tissue that surround the target of interest. In this review, we explore current evidence about the etiology of stimulation induced side effects in ET DBS and provide several evidence-based strategies to troubleshoot, reprogram and retain tremor suppression

    Prospective in silico evaluation of cone-beam computed tomography-guided stereotactic adaptive radiation therapy (CT-STAR) for the ablative treatment of ultracentral thoracic disease

    Get PDF
    PURPOSE: We conducted a prospective, in silico study to evaluate the feasibility of cone-beam computed tomography (CBCT)-guided stereotactic adaptive radiation therapy (CT-STAR) for the treatment of ultracentral thoracic cancers (NCT04008537). We hypothesized that CT-STAR would reduce dose to organs at risk (OARs) compared with nonadaptive stereotactic body radiation therapy (SBRT) while maintaining adequate tumor coverage. METHODS AND MATERIALS: Patients who were already receiving radiation therapy for ultracentral thoracic malignancies underwent 5 additional daily CBCTs on the ETHOS system as part of a prospective imaging study. These were used to simulate CT-STAR, in silico RESULTS: Seven patients were accrued, 6 with intraparenchymal tumors and 1 with a subcarinal lymph node. CT-STAR was feasible in 34 of 35 simulated fractions. In total, 32 dose constraint violations occurred when the P CONCLUSIONS: CT-STAR widened the dosimetric therapeutic index of ultracentral thorax SBRT compared with nonadaptive SBRT. A phase 1 protocol is underway to evaluate the safety of this paradigm for patients with ultracentral early-stage NSCLC

    Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule

    Get PDF
    Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges

    Many Labs 5:Testing pre-data collection peer review as an intervention to increase replicability

    Get PDF
    Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3?9; median total sample = 1,279.5, range = 276?3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (?r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00?.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19?.50)

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk
    corecore