University of Northern lowa

UNI ScholarWorks

Research in the Capitol 2019 Research in the Capitol

Apr 1st, 11:00 AM - 2:30 PM

Lightweight Formal Methods for Improving Software Security

Andrew Berns
University of Northern lowa

James Curbow
University of Northern lowa

See next page for additional authors

Let us know how access to this document benefits you

Copyright ©2019 Andrew Berns, James Curbow, Joshua Hilliard, Sheriff Jorkeh, and Miho
Sanders
Follow this and additional works at: https://scholarworks.uni.edu/rcapitol

b Part of the Software Engineering Commons

Recommended Citation

Berns, Andrew; Curbow, James; Hilliard, Joshua; Jorkeh, Sheriff; and Sanders, Miho, "Lightweight Formal
Methods for Improving Software Security" (2019). Research in the Capitol. 11.
https://scholarworks.uni.edu/rcapitol/2019/all/11

This Open Access Poster Presentation is brought to you for free and open access by the Honors Program at UNI
ScholarWorks. It has been accepted for inclusion in Research in the Capitol by an authorized administrator of UNI
ScholarWorks. For more information, please contact scholarworks@uni.edu.

https://scholarworks.uni.edu/
https://scholarworks.uni.edu/rcapitol
https://scholarworks.uni.edu/rcapitol/2019
https://scholarworks.uni.edu/feedback_form.html
https://scholarworks.uni.edu/rcapitol?utm_source=scholarworks.uni.edu%2Frcapitol%2F2019%2Fall%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uni.edu%2Frcapitol%2F2019%2Fall%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/rcapitol/2019/all/11?utm_source=scholarworks.uni.edu%2Frcapitol%2F2019%2Fall%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uni.edu

Author
Andrew Berns, James Curbow, Joshua Hilliard, Sheriff Jorkeh, and Miho Sanders

This open access poster presentation is available at UNI ScholarWorks: https://scholarworks.uni.edu/rcapitol/2019/
all/11

https://scholarworks.uni.edu/rcapitol/2019/all/11
https://scholarworks.uni.edu/rcapitol/2019/all/11

Lightwelight Formal Methods for Improving Software Security

University of Northern lowa

Dr. Andrew Berns, James Curbow, Joshua Hilliard, Sheriff Jorkeh, Miho Sanders

(Al

University of
Northern

Introduction

Software plays an Increasing role in managing the
responsibilities of many areas In society. As we've
continued to cede more responsibility to software, the
potential damage done from insecure software has grown.
It Is not hard to find examples of security breaches that
have resulted in major financial losses and personal
hardships for consumers.

Best Buy'shoppers payment information may have been
exposed in data breach The Marriott hack exposed the passport

numbers of more than 5 million people

Facebook hack update: Nearly 30 million users' data
stolen. How to find out if you're one of them

UIDAI’s Aadhaar Software Hacked, ID
Database Compromised, Experts Confirm

Bezos case exposes billionaires’ vulnerability to hackers

Security flaw could expose
credit card data

While formal methods have gained popularity in safety-
critical systems, they are much less common In other
categories of software. Formal methods can help create
better software, however, which would also be more
secure. “Half of cyber vulnerabilities are software defects
and the cost of avoiding and mitigating software errors
approaches $100B annually.” [1] Our project hopes to
help bring formal methods to more types of software.

Research Goals

» Measure the effectiveness of modern static analysis
tools at identifying, with programmer-defined
annotations, security vulnerabilities.

s ldentify a set of best practices for developers to follow
when using formal specifications while programming or
retrofitting existing programs.

« Step 1: Select a vulnerabillity in an open-source product.

*
CVE Details
The ultimate security vuln

Log In Register

View CVE

era b il :lt'(} {ffiff‘?}i.‘_fh'.n CE

Vulnerability Details : CVE-2017-1000393

d ear
master'. This allowed them to run arbitrary shell commands on the master node wheneve
e I . - = L =
Scripts permission typically only granted to administrators. @ J,E “ I{l ng_veri |.Dn5_tx't 'I.-;'I_E E_l-rtE o E
ublish Date : 2018-01-25 Last Update Date : 2018-02-08
Reports :
All
— = a 1y - = u 1 . E . ou 1 _
rchY REPD: https://github.com/Jenkinsci/Jenklns
eeeeeeeeeeee .
Product Search CVSS Scores & Vulnerability Types
Version Search
VSS Score
o - -) .) .) l'_]l"l'_lEl — -ﬂﬁl.ﬂ_i-ﬂl
nfidentiality Impact Complete (There is total information disclosure , result ing in all syster ot ' Ve -0 1la-k
Complete (There is a total compromise of system integrity. There is & - . _ , . .
compromised.) DESCRIPTION: 5ome generlic description can go here.
PRE: 7472cb2

POST: a38ddee

« Step 2: Identify the incorrect code and the corresponding fix.

* [3] admin_only.c @

} Session;

void print if admin(Session s} {

printf{"Only admin should be printing this.\n");
if (s.admin) {
printf("0Only admin should be printing this.\n");

« Step 3: Create annotations which might identify the error.

3 annotations.json 134 Bytes O

"filename™: "admin_only.c”,

"label™: "Only admin®,

"annotation™: "//@ assert s.admin;”

« Step 4: Test which annotations, If any, actually identify the error.

Checking annotations 1n pre
done.

Checking annotations 1n post

... done.

pre: ['[wp] Proved goals: 0/ 2']

post: |['[wp] Proved goals:

172

. essons Learned

Retrofitting is still hard.

While the tools for static analysis with formal methods
have improved In the past few years, it is still not easy to
take a project which has not used formal methods and
retrofit the code to work with current tools. This Is often
given as one of the main reasons why formal methods
have not gained widespread acceptance for cybersecurity

[2].

More annotations would be helpful.

Today’s static analysis tools can only check a subset of
possible operations. Some of the annotations that have
yet to be Iimplemented, such as whether or not a
particular variable Is assigned a value inside a method,
have only limited support. If these annotations were
checkable, it might improve the success rate for detecting
vulnerabilities.

Future Work

We are continuing to add to our dataset of software
vulnerability corrections and annotations for these
corrections.

As the data set grows, we will be better able to identify
the best practices for using formal methods to improve
computer security.

References

1] Schaffer, K., & Voas, J. (2016). What Happened to
Formal Methods for Security? Computer, 49(8), 70-79.
doi:10.1109/mc.2016.228

2] Chong, S., Guttman, J., Datta, A., Myers, A., Plerce, B.,
Schaumont, P., . . . Zeldovich, N. (2016, August 1). Report
on the NSF Workshop on Formal Methods for Security:.
Retrieved from

http://dl.acm.org/citation.cfm?id=3040225

	Lightweight Formal Methods for Improving Software Security
	Recommended Citation
	Author

	Template to create a scientific poster

