5,038 research outputs found

    Adopting national vegetation guidelines and the National Vegetation Information System (NVIS) framework in the Northern Territory

    Get PDF
    Guidelines and core attributes for site-based vegetation surveying and mapping developed for the Northern Territory, are relevant to botanical research, forestry typing, rangeland monitoring and reporting on the extent and condition of native and non-native vegetated landscapes. These initiatives are consistent with national vegetation guidelines and the National Vegetation Information System (NVIS) framework. This paper provides a synopsis of vegetation site data collection, classification and mapping in the Northern Territory, and discusses the benefits of consistency between the guidelines, core attributes and the NVIS framework; both of which has an emphasis on the NVIS hierarchical classification system for describing structural and floristic attributes of vegetation. The long-term aim of the NVIS framework is that national attributes are adopted at regional levels to enable comparability of vegetation information within survey and jurisdictional boundaries in the Northern Territory and across Australia. The guidelines and core attributes are incorporated in current and future vegetation survey and mapping programs in the Northern Territory

    Botaiho : Japanese organised crime under the Boryokudan countermeasures law

    Get PDF
    This thesis is an investigation into the effects of the 1992 böryokudan countermeasures law (böryokudan taisaku ha or, more simply, bötaihö) on Japan's organised crime syndicates (böryokudan or yakuza). Underlying this examination is a functionalist perspective of organised crime which rests on the premise that, far from being unambiguously socially dysfunctional, organised crime groups exist because they satisfy needs held by various sections of society (both in the upper and underworlds). This approach demystifies many of the supposedly unique aspects of the böryokudan/yakuza (such as yakuza-authority symbiosis) and places Japan within the compass of modem organised-crime studies. An empirical overview of the böryokudan's development from 1945 to 1992 shows that the prime dynamic behind this evolution has been the legal and law-enforcement environment within which these groups exist and that frequently the impact of these changes has been socially undesirable. Attempts to examine whether or not the bötaihö has similarly exacerbated organised criminality in Japan are hampered by the collapse of Japan's bubble economy in 1990. This event had profound consequences for boryokudan groups rendering many activities unviable, whilst simultaneously creating new opportunities. Despite these extraneous considerations, the bötaihö has had an observable impact on many aspects of the böryokudan's activities and some of these consequences have been socially undesirable. The legal analysis of the bötaihö is placed in the wider context of international organised-crime control measures, in particular America's RICO statutes and European laws, both of which were highly influential in the debate within Japan concerning the framing of new anti-böryokudan laws. The thesis concludes by arguing that the radically different structure of the bötaihö, vis-À-vis these alternative models, is part of a wider reversion to pre-war legal and policing norms in which, in addition to enforcement of the criminal law, the police also exercise considerable administrative powers

    Dynamical Stability of Witten Rings

    Get PDF
    The dynamical stability of cosmic rings, or vortons, is investigated for the particular equation of state given by the Witten bosonic model. It is found that there exists a finite range of the state parameter for which the vorton states are actually stable against dynamical perturbations. Inclusion of the electromagnetic self action into the equation of state slightly shrinks the stability region but otherwise yields no qualitative difference. If the Witten bosonic model represents a good approximation for more realistic string models, then the cosmological vorton excess problem can only be solved by assuming either that strings are formed at low energy scales or that some quantum instability may develop at a sufficient rate.Comment: 11 pages, LaTeX-ReVTeX (v.3), 2 figures available upon request, DAMTP R-94/1

    High Reynolds number tests of a Douglas DLBA 032 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    Get PDF
    A wind-tunnel investigation of a Douglas advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). The temperature was varied from 227 K (409 R) to 100 K (180 R) at pressures ranging from about 159 kPa (1.57 atm) to about 514 kPa (5.07 atm). Mach number was varied from 0.50 to 0.78. These variables provided a Reynolds number range (based on airfoil chord) from 6.0 to 30.0 x 10 to the 6th power. This investigation was specifically designed to: (1) test a Douglas airfoil from moderately low to flight-equivalent Reynolds numbers, and (2) evaluate sidewall-boundary-layer effects on transonic airfoil performance characteristics by a systematic variation of Mach number, Reynolds number, and sidewall-boundary-layer removal. Data are included which demonstrate the effects of fixing transition, Mach number, Reynolds number, and sidewall-boundary-layer removal on the aerodynamic characteristics of the airfoil. Also included are remarks on model design and model structural integrity

    Nuclear-Spin Relaxation in Molecular Solids with Reorienting Methyl and \u3ci\u3et\u3c/i\u3e-Butyl Groups: The Spectral Density and the State of the Solid

    Get PDF
    There are two solid phases which either have a large hysteresis of at least 90 K, or are both stable below 200 K. The sample melts at 262 K. We interpret the high-temperature phase R-versus-T-1 data with three models. First, we adopt a one-correlation-time model using a Davidson-Cole spectral density which suggests that there is a distribution of correlation times, or, equivalently, a distribution of activation energies for t-butyl and methyl group reorientation. In this case, the methyl and t-butyl reorientation is characterized by a cutoff activation energy of 17±1 kJ/mol which is to be compared with 18±1 kJ/mol in 1,4-DTB [P. A. Beckmann, F. A. Fusco, and A. E. O’Neill, J. Magn. Reson. 59, 63 (1984)] in which there is only the one phase. Second, we adopt two two-correlation-time models using Bloembergen-Purcell-Pound spectral densities; one based on the dynamical inequivalence of the methyl groups in each t-butyl group and one based on the dynamical inequivalence of different t-butyl groups, either because of intramolecular effects or because of intermolecular (crystal-structure) effects. In the low-temperature phase of 1,3-DTB, R(ω,T) is unusual in that it is Larmor-frequency dependent in the short-correlation-time limit (i.e., temperatures above the relaxation rate maximum). We have fit the data with a Havriliak-Negami spectral density (which reduces to a Davidson-Cole spectral density when one of the parameters becomes unity which, in turn, reduces to a Bloembergen-Purcell-Pound spectral density when an additional parameter becomes unity). The fit, with an effective activation energy of 10±3 kJ/mol, suggests that this low-temperature phase in 1,3-DTB is a glassy state. We relate the Havriliak-Negami spectral density to the Dissado-Hill spectral density which has a fundamental microscopic basis and which has been used to interpret a vast quantity of dielectric relaxation data as well as some mechanical relaxation data

    Nuclear-Spin Relaxation in Molecular Solids with Reorienting Methyl and \u3ci\u3et\u3c/i\u3e-Butyl Groups: The Spectral Density and the State of the Solid

    Get PDF
    There are two solid phases which either have a large hysteresis of at least 90 K, or are both stable below 200 K. The sample melts at 262 K. We interpret the high-temperature phase R-versus-T-1 data with three models. First, we adopt a one-correlation-time model using a Davidson-Cole spectral density which suggests that there is a distribution of correlation times, or, equivalently, a distribution of activation energies for t-butyl and methyl group reorientation. In this case, the methyl and t-butyl reorientation is characterized by a cutoff activation energy of 17±1 kJ/mol which is to be compared with 18±1 kJ/mol in 1,4-DTB [P. A. Beckmann, F. A. Fusco, and A. E. O’Neill, J. Magn. Reson. 59, 63 (1984)] in which there is only the one phase. Second, we adopt two two-correlation-time models using Bloembergen-Purcell-Pound spectral densities; one based on the dynamical inequivalence of the methyl groups in each t-butyl group and one based on the dynamical inequivalence of different t-butyl groups, either because of intramolecular effects or because of intermolecular (crystal-structure) effects. In the low-temperature phase of 1,3-DTB, R(ω,T) is unusual in that it is Larmor-frequency dependent in the short-correlation-time limit (i.e., temperatures above the relaxation rate maximum). We have fit the data with a Havriliak-Negami spectral density (which reduces to a Davidson-Cole spectral density when one of the parameters becomes unity which, in turn, reduces to a Bloembergen-Purcell-Pound spectral density when an additional parameter becomes unity). The fit, with an effective activation energy of 10±3 kJ/mol, suggests that this low-temperature phase in 1,3-DTB is a glassy state. We relate the Havriliak-Negami spectral density to the Dissado-Hill spectral density which has a fundamental microscopic basis and which has been used to interpret a vast quantity of dielectric relaxation data as well as some mechanical relaxation data

    Fermionic massive modes along cosmic strings

    Get PDF
    The influence on cosmic string dynamics of fermionic massive bound states propagating in the vortex, and getting their mass only from coupling to the string forming Higgs field, is studied. Such massive fermionic currents are numerically found to exist for a wide range of model parameters and seen to modify drastically the usual string dynamics coming from the zero mode currents alone. In particular, by means of a quantization procedure, a new equation of state describing cosmic strings with any kind of fermionic current, massive or massless, is derived and found to involve, at least, one state parameter per trapped fermion species. This equation of state exhibits transitions from subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for publication in Phys. Rev.

    Equation of state of cosmic strings with fermionic current-carriers

    Get PDF
    The relevant characteristic features, including energy per unit length and tension, of a cosmic string carrying massless fermionic currents in the framework of the Witten model in the neutral limit are derived through quantization of the spinor fields along the string. The construction of a Fock space is performed by means of a separation between longitudinal modes and the so-called transverse zero energy solutions of the Dirac equation in the vortex. As a result, quantization leads to a set of naturally defined state parameters which are the number densities of particles and anti-particles trapped in the cosmic string. It is seen that the usual one-parameter formalism for describing the macroscopic dynamics of current-carrying vortices is not sufficient in the case of fermionic carriers.Comment: 30 pages, 15 figures, uses ReVTeX, equation of state corrected, comments and references added. Accepted for publication in Phys. Rev.

    Cold, warm, and composite (cool) cosmic string models

    Get PDF
    The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension TT below the constant value T=m2T=m^2 say that characterizes the simple, longitudinally Lorentz invariant, Goto Nambu string model in terms of a fixed mass scale mm whose magnitude depends on that of the Higgs field responsible for the existence of the string. Such a reduction occurs in the standard "hot" cosmic string model in which the effect of thermal perturbations of a simple Goto Nambu model is expressed by the formula T2=m2(m2−2πΘ2/3)T^2=m^2(m^2-2\pi\Theta^2/3), where Θ\Theta is the string temperature. A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in "cold" conducting cosmic string models where the role of the temperature is played by an effective chemical potential ÎŒ\mu that is constructed as the magnitude of the phase ϕ\phi of a bosonic condensate of the kind whose existence was first proposed by Witten. The present article describes the construction and essential mechanical properties of a category of "warm" cosmic string models that are intermediate between these "hot" and "cold" extremes. These "warm" models are the string analogues of the standard Landau model for a 2-constituent finite temperature superfluid, and as such involve two independent currents interpretable as that of the entropy on one hand and that of the bosonic condensate on the other. It is surmised that the stationary (in particular ring) equilibrium states of such "warm" cosmic strings may be of cosmological significance.Comment: 31 pages, Tex preprint version of manuscript subsequently published (with editorial modifications) in Nuclear Physics

    The Star Formation History of the Large Magellanic Cloud

    Get PDF
    Using WFPC2 aboard the Hubble Space Telescope, we have created deep color-magnitude diagrams in the V and I passbands for approximately 100,000 stars in a field at the center of the LMC bar and another in the disk. The main--sequence luminosity functions (LFs) from 19 mag < V < 23.5 mag, the red clump and horizontal branch morphologies, and the differential Hess diagram of the two fields all strongly imply that the disk and bar have significantly different star-formation histories (SFHs). The disk's SFH has been relatively smooth and continuous over the last 15 Gyr while the bar's SFH was dominated by star formation episodes at intermediate ages. Comparison of the LF against predictions based on Padova theoretical stellar evolution models and an assumed age-metallicity relationship allows us to identify the dominant stellar populations in the bar with episodes of star formation that occurred from 4 to 6 and 1 to 2 Gyr ago. These events accounted, respectively, for approximately 25% and 15% of its stellar mass. The disk field may share a mild enhancement in SF for the younger episode, and thus we identify the 4 to 6 Gyr episode with the formation of the LMC bar.Comment: 14 pages, 5 figures, Latex, also available at http://www.ps.uci.edu/physics/smeckerhane.html. Accepted for publication in Ap
    • 

    corecore