The relevant characteristic features, including energy per unit length and
tension, of a cosmic string carrying massless fermionic currents in the
framework of the Witten model in the neutral limit are derived through
quantization of the spinor fields along the string. The construction of a Fock
space is performed by means of a separation between longitudinal modes and the
so-called transverse zero energy solutions of the Dirac equation in the vortex.
As a result, quantization leads to a set of naturally defined state parameters
which are the number densities of particles and anti-particles trapped in the
cosmic string. It is seen that the usual one-parameter formalism for describing
the macroscopic dynamics of current-carrying vortices is not sufficient in the
case of fermionic carriers.Comment: 30 pages, 15 figures, uses ReVTeX, equation of state corrected,
comments and references added. Accepted for publication in Phys. Rev.